File: pre_and_post_processing_methods.rst

package info (click to toggle)
python-marshmallow 3.26.1-0.4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,296 kB
  • sloc: python: 11,513; makefile: 11; sh: 8
file content (210 lines) | stat: -rw-r--r-- 6,845 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
Pre-processing and post-processing methods
==========================================

Decorator API
-------------

Data pre-processing and post-processing methods can be registered using the `pre_load <marshmallow.decorators.pre_load>`, `post_load <marshmallow.decorators.post_load>`, `pre_dump <marshmallow.decorators.pre_dump>`, and `post_dump <marshmallow.decorators.post_dump>` decorators.


.. code-block:: python

    from marshmallow import Schema, fields, post_load


    class UserSchema(Schema):
        name = fields.Str()
        slug = fields.Str()

        @post_load
        def slugify_name(self, in_data, **kwargs):
            in_data["slug"] = in_data["slug"].lower().strip().replace(" ", "-")
            return in_data


    schema = UserSchema()
    result = schema.load({"name": "Steve", "slug": "Steve Loria "})
    result["slug"]  # => 'steve-loria'

Passing "many"
--------------

By default, pre- and post-processing methods receive one object/datum at a time, transparently handling the ``many`` parameter passed to the ``Schema``'s `~marshmallow.Schema.dump`/`~marshmallow.Schema.load` method at runtime.

In cases where your pre- and post-processing methods needs to handle the input collection when processing multiple objects, add ``pass_many=True`` to the method decorators.

Your method will then receive the input data (which may be a single datum or a collection, depending on the dump/load call).

.. _enveloping_1:

Example: Enveloping
-------------------

One common use case is to wrap data in a namespace upon serialization and unwrap the data during deserialization.

.. code-block:: python

    from marshmallow import Schema, fields, pre_load, post_load, post_dump


    class BaseSchema(Schema):
        # Custom options
        __envelope__ = {"single": None, "many": None}
        __model__ = User

        def get_envelope_key(self, many):
            """Helper to get the envelope key."""
            key = self.__envelope__["many"] if many else self.__envelope__["single"]
            assert key is not None, "Envelope key undefined"
            return key

        @pre_load(pass_many=True)
        def unwrap_envelope(self, data, many, **kwargs):
            key = self.get_envelope_key(many)
            return data[key]

        @post_dump(pass_many=True)
        def wrap_with_envelope(self, data, many, **kwargs):
            key = self.get_envelope_key(many)
            return {key: data}

        @post_load
        def make_object(self, data, **kwargs):
            return self.__model__(**data)


    class UserSchema(BaseSchema):
        __envelope__ = {"single": "user", "many": "users"}
        __model__ = User
        name = fields.Str()
        email = fields.Email()


    user_schema = UserSchema()

    user = User("Mick", email="mick@stones.org")
    user_data = user_schema.dump(user)
    # {'user': {'email': 'mick@stones.org', 'name': 'Mick'}}

    users = [
        User("Keith", email="keith@stones.org"),
        User("Charlie", email="charlie@stones.org"),
    ]
    users_data = user_schema.dump(users, many=True)
    # {'users': [{'email': 'keith@stones.org', 'name': 'Keith'},
    #            {'email': 'charlie@stones.org', 'name': 'Charlie'}]}

    user_objs = user_schema.load(users_data, many=True)
    # [<User(name='Keith Richards')>, <User(name='Charlie Watts')>]

Raising errors in pre-/post-processor methods
---------------------------------------------

Pre- and post-processing methods may raise a `ValidationError <marshmallow.exceptions.ValidationError>`. By default, errors will be stored on the ``"_schema"`` key in the errors dictionary.

.. code-block:: python

    from marshmallow import Schema, fields, ValidationError, pre_load


    class BandSchema(Schema):
        name = fields.Str()

        @pre_load
        def unwrap_envelope(self, data, **kwargs):
            if "data" not in data:
                raise ValidationError('Input data must have a "data" key.')
            return data["data"]


    sch = BandSchema()
    try:
        sch.load({"name": "The Band"})
    except ValidationError as err:
        err.messages
    # {'_schema': ['Input data must have a "data" key.']}

If you want to store and error on a different key, pass the key name as the second argument to `ValidationError <marshmallow.exceptions.ValidationError>`.

.. code-block:: python

    from marshmallow import Schema, fields, ValidationError, pre_load


    class BandSchema(Schema):
        name = fields.Str()

        @pre_load
        def unwrap_envelope(self, data, **kwargs):
            if "data" not in data:
                raise ValidationError(
                    'Input data must have a "data" key.', "_preprocessing"
                )
            return data["data"]


    sch = BandSchema()
    try:
        sch.load({"name": "The Band"})
    except ValidationError as err:
        err.messages
    # {'_preprocessing': ['Input data must have a "data" key.']}

Pre-/post-processor invocation order
------------------------------------

In summary, the processing pipeline for deserialization is as follows:

1. ``@pre_load(pass_many=True)`` methods
2. ``@pre_load(pass_many=False)`` methods
3. ``load(in_data, many)`` (validation and deserialization)
4. ``@validates`` methods (field validators)
5. ``@validates_schema`` methods (schema validators)
6. ``@post_load(pass_many=True)`` methods
7. ``@post_load(pass_many=False)`` methods

The pipeline for serialization is similar, except that the ``pass_many=True`` processors are invoked *after* the ``pass_many=False`` processors and there are no validators.

1. ``@pre_dump(pass_many=False)`` methods
2. ``@pre_dump(pass_many=True)`` methods
3. ``dump(obj, many)`` (serialization)
4. ``@post_dump(pass_many=False)`` methods
5. ``@post_dump(pass_many=True)`` methods


.. warning::

    You may register multiple processor methods on a Schema. Keep in mind, however, that **the invocation order of decorated methods of the same type is not guaranteed**. If you need to guarantee order of processing steps, you should put them in the same method.


    .. code-block:: python

        from marshmallow import Schema, fields, pre_load


        # YES
        class MySchema(Schema):
            field_a = fields.Raw()

            @pre_load
            def preprocess(self, data, **kwargs):
                step1_data = self.step1(data)
                step2_data = self.step2(step1_data)
                return step2_data

            def step1(self, data): ...

            # Depends on step1
            def step2(self, data): ...


        # NO
        class MySchema(Schema):
            field_a = fields.Raw()

            @pre_load
            def step1(self, data, **kwargs): ...

            # Depends on step1
            @pre_load
            def step2(self, data, **kwargs): ...