File: test_generics.py

package info (click to toggle)
python-mashumaro 3.16-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,400 kB
  • sloc: python: 19,890; sh: 16; makefile: 5
file content (239 lines) | stat: -rw-r--r-- 6,366 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from dataclasses import dataclass
from datetime import date, datetime
from typing import Any, Generic, List, Mapping, Optional, TypeVar

from mashumaro import DataClassDictMixin
from mashumaro.mixins.json import DataClassJSONMixin
from tests.entities import MyGenericDataClass, SerializableTypeGenericList

T = TypeVar("T")
S = TypeVar("S")
P = TypeVar("P", Mapping[int, int], List[float])


@dataclass
class Foo(Generic[T], DataClassJSONMixin):
    x: T
    y: "Optional[Foo[Any]]"


@dataclass
class Bar(Foo): ...


def test_one_generic():
    @dataclass
    class A(Generic[T]):
        x: T

    @dataclass
    class B(A[datetime], DataClassDictMixin):
        pass

    obj = B(datetime(2021, 8, 15))
    assert B.from_dict({"x": "2021-08-15T00:00:00"}) == obj
    assert obj.to_dict() == {"x": "2021-08-15T00:00:00"}


def test_one_generic_list():
    @dataclass
    class A(List[T]):
        x: List[T]

    @dataclass
    class B(A[datetime], DataClassDictMixin):
        pass

    obj = B(x=[datetime(2021, 8, 15)])
    assert B.from_dict({"x": ["2021-08-15T00:00:00"]}) == obj
    assert obj.to_dict() == {"x": ["2021-08-15T00:00:00"]}


def test_two_generics():
    @dataclass
    class A1(Generic[T]):
        x: List[T]

    @dataclass
    class A2(Generic[T, S]):
        y: Mapping[T, S]

    @dataclass
    class B(A1[datetime], A2[datetime, date], DataClassDictMixin):
        pass

    obj = B(
        x=[datetime(2021, 8, 15), datetime(2021, 8, 16)],
        y={datetime(2021, 8, 17): date(2021, 8, 18)},
    )
    dump = {
        "x": ["2021-08-15T00:00:00", "2021-08-16T00:00:00"],
        "y": {"2021-08-17T00:00:00": "2021-08-18"},
    }
    assert B.from_dict(dump) == obj
    assert obj.to_dict() == dump


def test_partially_concrete_generic():
    @dataclass
    class A(Generic[T, S]):
        x: Mapping[T, S]

    @dataclass
    class B(A[datetime, S], DataClassDictMixin):
        pass

    obj = B(x={datetime(2022, 11, 21): "3.14"})
    assert B.from_dict({"x": {"2022-11-21T00:00:00": "3.14"}}) == obj
    assert obj.to_dict() == {"x": {"2022-11-21T00:00:00": "3.14"}}


def test_partially_concrete_generic_with_bound():
    @dataclass
    class A(Generic[T, P]):
        x: Mapping[T, P]

    @dataclass
    class B(A[date, P], DataClassDictMixin):
        pass

    obj1 = B(x={date(2022, 11, 21): {1: 2, 3: 4}})
    assert B.from_dict({"x": {"2022-11-21": {"1": "2", "3": "4"}}}) == obj1
    assert obj1.to_dict() == {"x": {"2022-11-21": {1: 2, 3: 4}}}
    obj2 = B(x={date(2022, 11, 21): [1.1, 3.3]})
    assert (
        B.from_dict({"x": {"2022-11-21": {"1.1": "2.2", "3.3": "4.4"}}})
        == obj2
    )
    assert obj2.to_dict() == {"x": {"2022-11-21": [1.1, 3.3]}}
    obj3 = B(x={date(2022, 11, 21): [1.1, 2.2, 3.3, 4.4]})
    assert (
        B.from_dict({"x": {"2022-11-21": ["1.1", "2.2", "3.3", "4.4"]}})
        == obj3
    )
    assert obj3.to_dict() == {"x": {"2022-11-21": [1.1, 2.2, 3.3, 4.4]}}


def test_concrete_generic_with_different_type_var():
    @dataclass
    class A(Generic[T]):
        x: T

    @dataclass
    class B(A[P], DataClassDictMixin):
        pass

    obj = B.from_dict({"x": {"1": "2", "3": "4"}})
    assert obj == B(x={1: 2, 3: 4})
    obj = B.from_dict({"x": {"1.1": "2.2", "3.3": "4.4"}})
    assert obj == B(x=[1.1, 3.3])
    obj = B.from_dict({"x": ["1.1", "2.2", "3.3", "4.4"]})
    assert obj == B(x=[1.1, 2.2, 3.3, 4.4])


def test_loose_generic_info_with_any_type():
    @dataclass
    class A(Generic[T]):
        x: T

    @dataclass
    class B(A, DataClassDictMixin):
        pass

    obj = B.from_dict({"x": {"1.1": "2.2", "3.3": "4.4"}})
    assert obj == B(x={"1.1": "2.2", "3.3": "4.4"})
    obj = B.from_dict({"x": ["1.1", "2.2", "3.3", "4.4"]})
    assert obj == B(x=["1.1", "2.2", "3.3", "4.4"])


def test_loose_generic_info_with_bound():
    @dataclass
    class A(Generic[P]):
        x: P

    @dataclass
    class B(A, DataClassDictMixin):
        pass

    obj = B.from_dict({"x": {"1": "2", "3": "4"}})
    assert obj == B(x={1: 2, 3: 4})
    obj = B.from_dict({"x": {"1.1": "2.2", "3.3": "4.4"}})
    assert obj == B(x=[1.1, 3.3])
    obj = B.from_dict({"x": ["1.1", "2.2", "3.3", "4.4"]})
    assert obj == B(x=[1.1, 2.2, 3.3, 4.4])


def test_loose_generic_info_in_first_generic():
    @dataclass
    class A(Generic[P]):
        x: P

    @dataclass
    class B(A):
        pass

    @dataclass
    class C(B, Generic[P]):
        y: P

    @dataclass
    class D(C[List[float]], DataClassDictMixin):
        pass

    obj = D.from_dict({"x": {"1": "2"}, "y": {"3.3": "4.4"}})
    assert obj == D(x={1: 2}, y=[3.3])
    obj = D.from_dict({"x": {"1.1": "2.2"}, "y": {"3.3": "4.4"}})
    assert obj == D(x=[1.1], y=[3.3])


def test_not_dataclass_generic():
    class MyGeneric(Generic[P, T]):
        pass

    @dataclass
    class GenericDataClass(Generic[P]):
        x: P

    @dataclass
    class DataClass(MyGeneric[P, T], GenericDataClass[P]):
        pass

    @dataclass
    class ConcreteDataClass(DataClass[List[float], float], DataClassDictMixin):
        pass

    obj = ConcreteDataClass.from_dict({"x": {"1": "2", "3": "4"}})
    assert obj == ConcreteDataClass(x=[1.0, 3.0])


def test_generic_dataclass_as_field_type():
    @dataclass
    class DataClass(DataClassDictMixin):
        date: MyGenericDataClass[date]
        str: MyGenericDataClass[str]

    obj = DataClass(
        date=MyGenericDataClass(date(2021, 9, 14)),
        str=MyGenericDataClass("2021-09-14"),
    )
    dictionary = {"date": {"x": "2021-09-14"}, "str": {"x": "2021-09-14"}}
    assert DataClass.from_dict(dictionary) == obj
    assert obj.to_dict() == dictionary


def test_serializable_type_generic_class():
    @dataclass
    class DataClass(DataClassDictMixin):
        x: SerializableTypeGenericList[str]

    obj = DataClass(SerializableTypeGenericList(["a", "b", "c"]))
    assert DataClass.from_dict({"x": ["a", "b", "c"]}) == obj
    assert obj.to_dict() == {"x": ["a", "b", "c"]}


def test_self_referenced_generic_no_max_recursion_error():
    obj = Bar(42, Foo(33, None))
    assert obj.to_dict() == {"x": 42, "y": {"x": 33, "y": None}}
    assert Bar.from_dict({"x": 42, "y": {"x": 33, "y": None}}) == obj
    assert obj.to_json() == '{"x": 42, "y": {"x": 33, "y": null}}'
    assert Bar.from_json('{"x": 42, "y": {"x": 33, "y": null}}') == obj