File: test_pep_646.py

package info (click to toggle)
python-mashumaro 3.16-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,400 kB
  • sloc: python: 19,890; sh: 16; makefile: 5
file content (598 lines) | stat: -rw-r--r-- 18,416 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from dataclasses import dataclass
from datetime import date
from functools import partial
from typing import Generic, Tuple, TypeVar

try:
    from typing import TypeVarTuple
except ImportError:
    from typing_extensions import TypeVarTuple
try:
    from typing import Unpack
except ImportError:
    from typing_extensions import Unpack

import pytest

from mashumaro import DataClassDictMixin
from mashumaro.core.const import PY_311_MIN

# noinspection PyProtectedMember
from mashumaro.core.meta.helpers import (
    _check_generic,
    _flatten_type_args,
    resolve_type_params,
    type_name,
)
from mashumaro.core.meta.types.common import FieldContext, ValueSpec

# noinspection PyProtectedMember
from mashumaro.core.meta.types.pack import pack_tuple

# noinspection PyProtectedMember
from mashumaro.core.meta.types.unpack import unpack_tuple
from mashumaro.exceptions import MissingField

K = TypeVar("K")
V = TypeVar("V")
Ts = TypeVarTuple("Ts")


_type_name = partial(type_name, short=True)


@dataclass
class MyGenericDataClassTs(Generic[Unpack[Ts]], DataClassDictMixin):
    x: Tuple[int, Unpack[Ts]]


class MyGenericTs(Generic[Unpack[Ts]]):
    pass


class MyGenericTsK(Generic[Unpack[Ts], K]):
    pass


def test_check_generic():
    with pytest.raises(TypeError) as e:
        _check_generic(object, (K, Unpack[Ts], Unpack[Ts]), (int,))
    assert (
        str(e.value)
        == "Multiple unpacks are disallowed within a single type parameter "
        "list for object"
    )

    with pytest.raises(TypeError) as e:
        _check_generic(object, (K, V), (int,))
    assert (
        str(e.value) == f"Too few arguments for object; actual 1, expected 2"
    )

    with pytest.raises(TypeError) as e:
        _check_generic(object, (K, Unpack[Ts], V), (int,))
    assert (
        str(e.value)
        == "Too few arguments for object; actual 1, expected at least 2"
    )


def test_dataclass_with_multiple_unpacks():
    with pytest.raises(TypeError) as e:

        @dataclass
        class DataClass(DataClassDictMixin):
            x: Tuple[Unpack[Tuple[int]], Unpack[Tuple[float]]]

    typ_name = type_name(Tuple[Unpack[Tuple[int]], Unpack[Tuple[float]]])
    assert (
        str(e.value)
        == "Multiple unpacks are disallowed within a single type parameter "
        f"list for {typ_name}"
    )


def test_dataclass_with_single_unpack_tuple():
    @dataclass
    class DataClass(DataClassDictMixin):
        a: Tuple[Unpack[Tuple[int, ...]]]
        b: Tuple[Unpack[Tuple[int, float, int]]]
        c: Tuple[Unpack[Tuple[int]]]
        d: Tuple[Unpack[Tuple[()]]]

    obj = DataClass(
        a=(1, 2, 3, 4, 5),
        b=(1, 2.2, 3),
        c=(1,),
        d=(),
    )
    assert obj.to_dict() == {
        "a": [1, 2, 3, 4, 5],
        "b": [1, 2.2, 3],
        "c": [1],
        "d": [],
    }
    assert (
        DataClass.from_dict(
            {
                "a": ["1", "2", "3", "4", 5.0],
                "b": ["1", "2.2", "3"],
                "c": ["1"],
                "d": ["1", "2", "3"],
            }
        )
        == obj
    )


def test_dataclass_with_mixed_unpack_tuple_ellipsis():
    @dataclass
    class DataClass(DataClassDictMixin):
        a: Tuple[float, Unpack[Tuple[int, ...]]]
        b: Tuple[Unpack[Tuple[int, ...]], float]
        c: Tuple[float, Unpack[Tuple[int, ...]], float]

    obj = DataClass(
        a=(1.1, 2, 3, 4, 5),
        b=(1, 2, 3, 4, 5.5),
        c=(1.1, 2, 3, 4, 5.5),
    )
    assert obj.to_dict() == {
        "a": [1.1, 2, 3, 4, 5],
        "b": [1, 2, 3, 4, 5.5],
        "c": [1.1, 2, 3, 4, 5.5],
    }
    assert (
        DataClass.from_dict(
            {
                "a": ["1.1", "2", "3", "4", 5.0],
                "b": [1.0, "2", "3", "4", "5.5"],
                "c": ["1.1", "2", "3", 4.0, 5.5],
            }
        )
        == obj
    )


def test_dataclass_with_mixed_unpack_tuple_multiple_args():
    @dataclass
    class DataClass(DataClassDictMixin):
        a: Tuple[float, Unpack[Tuple[int, float, int]]]
        b: Tuple[Unpack[Tuple[int, float, int]], float]
        c: Tuple[float, Unpack[Tuple[int, float, int]], float]

    obj = DataClass(
        a=(1.1, 2, 3.3, 4),
        b=(1, 2.2, 3, 4.4),
        c=(1.1, 2, 3.3, 4, 5.5),
    )
    assert obj.to_dict() == {
        "a": [1.1, 2, 3.3, 4],
        "b": [1, 2.2, 3, 4.4],
        "c": [1.1, 2, 3.3, 4, 5.5],
    }
    assert (
        DataClass.from_dict(
            {
                "a": ["1.1", "2", 3.3, 4.0],
                "b": [1.0, 2.2, "3", "4.4"],
                "c": ["1.1", "2", 3.3, 4.0, "5.5"],
            }
        )
        == obj
    )


def test_dataclass_with_mixed_unpack_tuple_one_arg():
    @dataclass
    class DataClass(DataClassDictMixin):
        a: Tuple[float, Unpack[Tuple[int]]]
        b: Tuple[Unpack[Tuple[int]], float]
        c: Tuple[float, Unpack[Tuple[int]], float]

    obj = DataClass(
        a=(1.1, 2),
        b=(1, 2.2),
        c=(1.1, 2, 3.3),
    )
    assert obj.to_dict() == {
        "a": [1.1, 2],
        "b": [1, 2.2],
        "c": [1.1, 2, 3.3],
    }
    assert (
        DataClass.from_dict(
            {
                "a": ["1.1", 2.0],
                "b": [1.0, "2.2"],
                "c": ["1.1", 2.0, 3.3],
            }
        )
        == obj
    )


def test_dataclass_with_mixed_unpack_empty_tuple():
    @dataclass
    class DataClass(DataClassDictMixin):
        a: Tuple[float, Unpack[Tuple[()]]]
        b: Tuple[Unpack[Tuple[()]], float]
        c: Tuple[float, Unpack[Tuple[()]], float]

    obj = DataClass(
        a=(1.1,),
        b=(1.1,),
        c=(1.1, 2.2),
    )
    assert obj.to_dict() == {
        "a": [1.1],
        "b": [1.1],
        "c": [1.1, 2.2],
    }
    assert (
        DataClass.from_dict(
            {
                "a": ["1.1"],
                "b": ["1.1"],
                "c": ["1.1", "2.2"],
            }
        )
        == obj
    )


@pytest.mark.skipif(not PY_311_MIN, reason="requires python 3.11")
def test_type_name_for_unpacks_py_311():
    assert _type_name(Tuple[Unpack[Tuple[int, ...]]]) == "Tuple[int, ...]"
    assert _type_name(Tuple[Unpack[Tuple[int, float]]]) == "Tuple[int, float]"
    assert (
        _type_name(Tuple[int, Unpack[Tuple[float, ...]]])
        == "Tuple[int, *Tuple[float, ...]]"
    )
    assert (
        _type_name(Tuple[int, Unpack[Tuple[float, str]]])
        == "Tuple[int, float, str]"
    )
    assert _type_name(Tuple[Unpack[Tuple[()]]]) == "Tuple[()]"
    assert _type_name(Tuple[int, Unpack[Tuple[()]]]) == "Tuple[int]"
    assert (
        _type_name(Tuple[str, Unpack[Tuple[int, ...]], int])
        == "Tuple[str, *Tuple[int, ...], int]"
    )
    assert (
        _type_name(Tuple[str, Unpack[Tuple[Tuple[int], ...]], int])
        == "Tuple[str, *Tuple[Tuple[int], ...], int]"
    )
    assert (
        _type_name(
            Tuple[str, Unpack[Tuple[Tuple[Unpack[Tuple[int]], ...]]], int]
        )
        == "Tuple[str, Tuple[int, ...], int]"
    )
    assert _type_name(Tuple[Unpack[Ts]]) == "Tuple[*Ts]"
    assert _type_name(Tuple[int, Unpack[Ts], int]) == "Tuple[int, *Ts, int]"
    assert _type_name(Generic[Unpack[Ts]]) == "Generic[*Ts]"
    assert _type_name(Generic[K, Unpack[Ts], V]) == "Generic[Any, *Ts, Any]"
    assert _type_name(Unpack[Tuple[int]]) == "int"
    assert _type_name(Unpack[Tuple[int, float]]) == "int, float"
    assert _type_name(Unpack[Ts]) == "*Ts"
    assert _type_name(Ts) == "Ts"
    assert (
        _type_name(Tuple[Unpack[Ts], K][Unpack[Tuple[int, ...]]])
        == "Tuple[*Tuple[int, ...], int]"
    )
    assert (
        _type_name(Tuple[Unpack[Ts], K][Unpack[Tuple[int, ...]], date])
        == "Tuple[*Tuple[int, ...], date]"
    )
    assert (
        _type_name(Tuple[Unpack[Ts], K][date, Unpack[Tuple[int, ...]]])
        == "Tuple[date, *Tuple[int, ...], int]"
    )


@pytest.mark.skipif(PY_311_MIN, reason="requires python<3.11")
def test_type_name_for_unpacks_py_less_than_311():
    assert _type_name(Tuple[Unpack[Tuple[int, ...]]]) == "Tuple[int, ...]"
    assert _type_name(Tuple[Unpack[Tuple[int, float]]]) == "Tuple[int, float]"
    assert (
        _type_name(Tuple[int, Unpack[Tuple[float, ...]]])
        == "Tuple[int, Unpack[Tuple[float, ...]]]"
    )
    assert (
        _type_name(Tuple[int, Unpack[Tuple[float, str]]])
        == "Tuple[int, float, str]"
    )
    assert _type_name(Tuple[Unpack[Tuple[()]]]) == "Tuple[()]"
    assert _type_name(Tuple[int, Unpack[Tuple[()]]]) == "Tuple[int]"
    assert (
        _type_name(Tuple[str, Unpack[Tuple[int, ...]], int])
        == "Tuple[str, Unpack[Tuple[int, ...]], int]"
    )
    assert (
        _type_name(Tuple[str, Unpack[Tuple[Tuple[int], ...]], int])
        == "Tuple[str, Unpack[Tuple[Tuple[int], ...]], int]"
    )
    assert (
        _type_name(
            Tuple[str, Unpack[Tuple[Tuple[Unpack[Tuple[int]], ...]]], int]
        )
        == "Tuple[str, Tuple[int, ...], int]"
    )
    assert _type_name(Tuple[Unpack[Ts]]) == "Tuple[Unpack[Ts]]"
    assert (
        _type_name(Tuple[int, Unpack[Ts], int])
        == "Tuple[int, Unpack[Ts], int]"
    )
    assert _type_name(Generic[Unpack[Ts]]) == "Generic[Unpack[Ts]]"
    assert (
        _type_name(Generic[K, Unpack[Ts], V])
        == "Generic[Any, Unpack[Ts], Any]"
    )
    assert _type_name(Unpack[Tuple[int]]) == "int"
    assert _type_name(Unpack[Tuple[int, float]]) == "int, float"
    assert _type_name(Unpack[Ts]) == "Unpack[Ts]"
    assert _type_name(Ts) == "Ts"

    # this doesn't work on python<3.11
    # assert (
    #     _type_name(Tuple[Unpack[Ts], K][Unpack[Tuple[int, ...]]])
    #     == "Tuple[Unpack[Tuple[int, ...]], int]"
    # )
    # assert (
    #     _type_name(Tuple[Unpack[Ts], K][Unpack[Tuple[int, ...]], date])
    #     == "Tuple[Unpack[Tuple[int, ...]], date]"
    # )
    # assert (
    #     _type_name(Tuple[Unpack[Ts], K][date, Unpack[Tuple[int, ...]]])
    #     == "Tuple[date, Unpack[Tuple[int, ...]], int]"
    # )


def test_concrete_generic_with_empty_tuple():
    @dataclass
    # I tried MyGenericDataClassTs[()] but [()] becomes just (). Impossible.
    class ConcreteDataClass(MyGenericDataClassTs[Unpack[Tuple[()]]]):
        pass

    obj = ConcreteDataClass((1,))
    assert obj.to_dict() == {"x": [1]}
    assert ConcreteDataClass.from_dict({"x": [1]}) == obj
    assert ConcreteDataClass.from_dict({"x": [1, 2, 3]}) == obj


def test_concrete_generic_with_variable_length_tuple_any():
    @dataclass
    class ConcreteDataClass(MyGenericDataClassTs):
        pass

    obj = ConcreteDataClass((1, "a", date(2022, 12, 17)))
    assert obj.to_dict() == {"x": [1, "a", date(2022, 12, 17)]}
    assert (
        ConcreteDataClass.from_dict({"x": ["1", "a", date(2022, 12, 17)]})
        == obj
    )


def test_concrete_generic_with_replaced_tuple_with_one_arg():
    @dataclass
    class ConcreteDataClass(MyGenericDataClassTs[Unpack[Tuple[K]]]):
        pass

    obj = ConcreteDataClass((1, date(2022, 12, 17)))
    assert obj.to_dict() == {"x": [1, date(2022, 12, 17)]}
    assert (
        ConcreteDataClass.from_dict({"x": ["1", date(2022, 12, 17), "a"]})
        == obj
    )


def test_concrete_generic_with_replaced_tuple_with_multiple_args():
    @dataclass
    class ConcreteDataClass(MyGenericDataClassTs[Unpack[Tuple[float, float]]]):
        pass

    obj = ConcreteDataClass((1, 2.2, 3.3))
    assert obj.to_dict() == {"x": [1, 2.2, 3.3]}
    assert ConcreteDataClass.from_dict({"x": ["1", "2.2", "3.3"]}) == obj


@pytest.mark.skipif(not PY_311_MIN, reason="doesn't work on py<3.11")
def test_with_int_float_tuple_and_any_at_the_end():
    Ts1 = TypeVarTuple("Ts1")
    Ts2 = TypeVarTuple("Ts2")
    IntTuple = Tuple[int, Unpack[Ts1]]
    IntFloatTuple = IntTuple[float, Unpack[Ts2]]

    @dataclass
    class DataClass(DataClassDictMixin):
        x: IntFloatTuple

    obj = DataClass((1, 2.2, "3", date(2022, 12, 17)))
    assert obj.to_dict() == {"x": [1, 2.2, "3", date(2022, 12, 17)]}
    assert (
        DataClass.from_dict({"x": ["1", "2.2", "3", date(2022, 12, 17)]})
        == obj
    )


@pytest.mark.skipif(not PY_311_MIN, reason="doesn't work on py<3.11")
def test_with_int_floats_tuple():
    Ts1 = TypeVarTuple("Ts1")
    IntTuple = Tuple[int, Unpack[Ts1]]
    IntFloatsTuple = IntTuple[Unpack[Tuple[float, ...]]]

    @dataclass
    class DataClass(DataClassDictMixin):
        x: IntFloatsTuple

    obj = DataClass((1, 2.2, 3.3, 4.4))
    assert obj.to_dict() == {"x": [1, 2.2, 3.3, 4.4]}
    assert DataClass.from_dict({"x": ["1", "2.2", "3.3", "4.4"]}) == obj


@pytest.mark.skipif(not PY_311_MIN, reason="doesn't work on py<3.11")
def test_splitting_arbitrary_length_tuples_1():
    Elderberries = Tuple[Unpack[Ts], K]

    @dataclass
    class DataClass(DataClassDictMixin):
        x: Elderberries[Unpack[Tuple[int, ...]]]

    obj = DataClass((1, 2, 3))
    assert obj.to_dict() == {"x": [1, 2, 3]}
    assert DataClass.from_dict({"x": ["1", "2", "3"]}) == obj

    obj = DataClass((1,))
    assert obj.to_dict() == {"x": [1]}
    assert DataClass.from_dict({"x": [1]}) == obj


def test_dataclass_with_splitting_arbitrary_length_tuples_1():
    @dataclass
    class GenericDataClass(Generic[Unpack[Ts], K], DataClassDictMixin):
        x: Tuple[Unpack[Ts], K]

    @dataclass
    class ConcreteDataClass(GenericDataClass[Unpack[Tuple[int, ...]]]):
        pass

    obj = ConcreteDataClass((1, 2, 3))
    assert obj.to_dict() == {"x": [1, 2, 3]}
    assert ConcreteDataClass.from_dict({"x": ["1", "2", "3"]}) == obj

    obj = ConcreteDataClass((1,))
    assert obj.to_dict() == {"x": [1]}
    assert ConcreteDataClass.from_dict({"x": [1]}) == obj


@pytest.mark.skipif(not PY_311_MIN, reason="doesn't work on py<3.11")
def test_splitting_arbitrary_length_tuples_2():
    Elderberries = Tuple[Unpack[Ts], K]

    @dataclass
    class DataClass(DataClassDictMixin):
        x: Elderberries[Unpack[Tuple[int, ...]], date]

    obj = DataClass((1, 2, date(2022, 12, 17)))
    assert obj.to_dict() == {"x": [1, 2, "2022-12-17"]}
    assert DataClass.from_dict({"x": ["1", "2", "2022-12-17"]}) == obj

    obj = DataClass((date(2022, 12, 17),))
    assert obj.to_dict() == {"x": ["2022-12-17"]}
    assert DataClass.from_dict({"x": ["2022-12-17"]}) == obj


def test_dataclass_with_splitting_arbitrary_length_tuples_2():
    @dataclass
    class GenericDataClass(Generic[Unpack[Ts], K], DataClassDictMixin):
        x: Tuple[Unpack[Ts], K]

    @dataclass
    class ConcreteDataClass(GenericDataClass[Unpack[Tuple[int, ...]], date]):
        pass

    obj = ConcreteDataClass((1, 2, date(2022, 12, 17)))
    assert obj.to_dict() == {"x": [1, 2, "2022-12-17"]}
    assert ConcreteDataClass.from_dict({"x": ["1", "2", "2022-12-17"]}) == obj

    obj = ConcreteDataClass((date(2022, 12, 17),))
    assert obj.to_dict() == {"x": ["2022-12-17"]}
    assert ConcreteDataClass.from_dict({"x": ["2022-12-17"]}) == obj


@pytest.mark.skipif(not PY_311_MIN, reason="doesn't work on py<3.11")
def test_splitting_arbitrary_length_tuples_3():
    Elderberries = Tuple[Unpack[Ts], K]

    @dataclass
    class DataClass(DataClassDictMixin):
        x: Elderberries[date, Unpack[Tuple[int, ...]]]

    obj = DataClass((date(2022, 12, 17), 1, 2, 3))
    assert obj.to_dict() == {"x": ["2022-12-17", 1, 2, 3]}
    assert DataClass.from_dict({"x": ["2022-12-17", "1", "2", "3"]}) == obj

    obj = DataClass((date(2022, 12, 17), 1))
    assert obj.to_dict() == {"x": ["2022-12-17", 1]}
    assert DataClass.from_dict({"x": ["2022-12-17", "1"]}) == obj


def test_dataclass_with_splitting_arbitrary_length_tuples_3():
    @dataclass
    class GenericDataClass(Generic[Unpack[Ts], K], DataClassDictMixin):
        x: Tuple[Unpack[Ts], K]

    @dataclass
    class ConcreteDataClass(GenericDataClass[date, Unpack[Tuple[int, ...]]]):
        pass

        class Config:
            debug = True

    obj = ConcreteDataClass((date(2022, 12, 17), 1, 2))
    assert obj.to_dict() == {"x": ["2022-12-17", 1, 2]}
    assert ConcreteDataClass.from_dict({"x": ["2022-12-17", "1", "2"]}) == obj

    obj = ConcreteDataClass((date(2022, 12, 17), 1))
    assert obj.to_dict() == {"x": ["2022-12-17", 1]}
    assert ConcreteDataClass.from_dict({"x": ["2022-12-17", 1]}) == obj


def test_resolve_type_params_with_unpacks():
    assert resolve_type_params(MyGenericTsK, [int, float], False) == {
        MyGenericTsK: {K: float, Unpack[Ts]: Unpack[Tuple[int]]}
    }
    assert resolve_type_params(MyGenericTsK, [int, str, float], False) == {
        MyGenericTsK: {K: float, Unpack[Ts]: Unpack[Tuple[int, str]]}
    }
    assert resolve_type_params(
        MyGenericTsK, [Unpack[Tuple[int, str]], float], False
    ) == {MyGenericTsK: {K: float, Unpack[Ts]: Unpack[Tuple[int, str]]}}
    assert resolve_type_params(
        MyGenericTsK, [Unpack[Tuple[int, ...]]], False
    ) == {MyGenericTsK: {K: int, Unpack[Ts]: Unpack[Tuple[int, ...]]}}
    assert resolve_type_params(
        MyGenericTsK, [str, Unpack[Tuple[int, ...]]], False
    ) == {
        MyGenericTsK: {
            K: int,
            Unpack[Ts]: Unpack[Tuple[str, Unpack[Tuple[int, ...]]]],
        }
    }
    assert resolve_type_params(MyGenericTs, [()], False) == {
        MyGenericTs: {Unpack[Ts]: Unpack[Tuple[()]]}
    }


def test_dataclass_with_tuple_int_and_empty():
    @dataclass
    class ConcreteDataClass(MyGenericDataClassTs[Unpack[Tuple[()]]]):
        pass

    obj = ConcreteDataClass((1,))
    assert obj.to_dict() == {"x": [1]}
    assert ConcreteDataClass.from_dict({"x": [1]}) == obj
    assert ConcreteDataClass.from_dict({"x": [1, 2, 3]}) == obj
    with pytest.raises(MissingField):
        ConcreteDataClass.from_dict({})


def test_unpack_tuple_with_multiple_unpacks():
    spec = ValueSpec(
        type=Tuple,
        expression="value",
        builder=object,
        field_ctx=FieldContext("x", {}),
    )
    with pytest.raises(TypeError):
        unpack_tuple(spec, (Unpack[Tuple[int]], Unpack[Tuple[float]]))
    with pytest.raises(TypeError):
        pack_tuple(spec, (Unpack[Tuple[int]], Unpack[Tuple[float]]))


def test_flatten_type_args_with_empty_tuple():
    assert _flatten_type_args([Unpack[Tuple[()]]]) == [()]
    assert _flatten_type_args([int, Unpack[Tuple[()]]]) == [int]
    assert _flatten_type_args([Unpack[tuple[()]]]) == [()]
    assert _flatten_type_args([int, Unpack[tuple[()]]]) == [int]