1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
Metadata-Version: 1.1
Name: matplotlib-venn
Version: 0.11.5
Summary: Functions for plotting area-proportional two- and three-way Venn diagrams in matplotlib.
Home-page: https://github.com/konstantint/matplotlib-venn
Author: Konstantin Tretyakov
Author-email: kt@ut.ee
License: MIT
Description: ====================================================
Venn diagram plotting routines for Python/Matplotlib
====================================================
.. image:: https://travis-ci.org/konstantint/matplotlib-venn.png?branch=master
:target: https://travis-ci.org/konstantint/matplotlib-venn
Routines for plotting area-weighted two- and three-circle venn diagrams.
Installation
------------
The simplest way to install the package is via ``easy_install`` or
``pip``::
$ easy_install matplotlib-venn
Dependencies
------------
- ``numpy``,
- ``scipy``,
- ``matplotlib``.
Usage
-----
The package provides four main functions: ``venn2``,
``venn2_circles``, ``venn3`` and ``venn3_circles``.
The functions ``venn2`` and ``venn2_circles`` accept as their only
required argument a 3-element list ``(Ab, aB, AB)`` of subset sizes,
e.g.::
venn2(subsets = (3, 2, 1))
and draw a two-circle venn diagram with respective region areas. In
the particular example, the region, corresponding to subset ``A and
not B`` will be three times larger in area than the region,
corresponding to subset ``A and B``. Alternatively, you can simply
provide a list of two ``set`` or ``Counter`` (i.e. multi-set) objects instead (new in version 0.7),
e.g.::
venn2([set(['A', 'B', 'C', 'D']), set(['D', 'E', 'F'])])
Similarly, the functions ``venn3`` and ``venn3_circles`` take a
7-element list of subset sizes ``(Abc, aBc, ABc, abC, AbC, aBC,
ABC)``, and draw a three-circle area-weighted venn
diagram. Alternatively, you can provide a list of three ``set`` or ``Counter`` objects
(rather than counting sizes for all 7 subsets).
The functions ``venn2_circles`` and ``venn3_circles`` draw just the
circles, whereas the functions ``venn2`` and ``venn3`` draw the
diagrams as a collection of colored patches, annotated with text
labels. In addition (version 0.7+), functions ``venn2_unweighted`` and
``venn3_unweighted`` draw the Venn diagrams without area-weighting.
Note that for a three-circle venn diagram it is not in general
possible to achieve exact correspondence between the required set
sizes and region areas, however in most cases the picture will still
provide a decent indication.
The functions ``venn2_circles`` and ``venn3_circles`` return the list of ``matplotlib.patch.Circle`` objects that may be tuned further
to your liking. The functions ``venn2`` and ``venn3`` return an object of class ``VennDiagram``,
which gives access to constituent patches, text elements, and (since
version 0.7) the information about the centers and radii of the
circles.
Basic Example::
from matplotlib_venn import venn2
venn2(subsets = (3, 2, 1))
For the three-circle case::
from matplotlib_venn import venn3
venn3(subsets = (1, 1, 1, 2, 1, 2, 2), set_labels = ('Set1', 'Set2', 'Set3'))
A more elaborate example::
from matplotlib import pyplot as plt
import numpy as np
from matplotlib_venn import venn3, venn3_circles
plt.figure(figsize=(4,4))
v = venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'))
v.get_patch_by_id('100').set_alpha(1.0)
v.get_patch_by_id('100').set_color('white')
v.get_label_by_id('100').set_text('Unknown')
v.get_label_by_id('A').set_text('Set "A"')
c = venn3_circles(subsets=(1, 1, 1, 1, 1, 1, 1), linestyle='dashed')
c[0].set_lw(1.0)
c[0].set_ls('dotted')
plt.title("Sample Venn diagram")
plt.annotate('Unknown set', xy=v.get_label_by_id('100').get_position() - np.array([0, 0.05]), xytext=(-70,-70),
ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='gray', alpha=0.1),
arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray'))
plt.show()
An example with multiple subplots (new in version 0.6)::
from matplotlib_venn import venn2, venn2_circles
figure, axes = plt.subplots(2, 2)
venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B'), ax=axes[0][0])
venn2_circles((1, 2, 3), ax=axes[0][1])
venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'), ax=axes[1][0])
venn3_circles({'001': 10, '100': 20, '010': 21, '110': 13, '011': 14}, ax=axes[1][1])
plt.show()
Perhaps the most common use case is generating a Venn diagram given
three sets of objects::
set1 = set(['A', 'B', 'C', 'D'])
set2 = set(['B', 'C', 'D', 'E'])
set3 = set(['C', 'D',' E', 'F', 'G'])
venn3([set1, set2, set3], ('Set1', 'Set2', 'Set3'))
plt.show()
Questions
---------
* If you ask your questions at `StackOverflow <http://stackoverflow.com/>`_ and tag them `matplotlib-venn <http://stackoverflow.com/questions/tagged/matplotlib-venn>`_, chances are high you'll get an answer from the maintainer of this package.
See also
--------
* Report issues and submit fixes at Github:
https://github.com/konstantint/matplotlib-venn
Check out the ``DEVELOPER-README.rst`` for development-related notes.
* Some alternative means of plotting a Venn diagram (as of
October 2012) are reviewed in the blog post:
http://fouryears.eu/2012/10/13/venn-diagrams-in-python/
* The `matplotlib-subsets
<https://pypi.python.org/pypi/matplotlib-subsets>`_ package
visualizes a hierarchy of sets as a tree of rectangles.
Keywords: matplotlib plotting charts venn-diagrams
Platform: Platform Independent
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering :: Visualization
|