1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
'''
Venn diagram plotting routines.
General-purpose math routines for computing with circular arcs.
Everything is encapsulated in the "Arc" class.
Copyright 2014, Konstantin Tretyakov.
http://kt.era.ee/
Licensed under MIT license.
'''
import numpy as np
from matplotlib_venn._math import tol, circle_circle_intersection, vector_angle_in_degrees
class Arc(object):
'''
A representation of a directed circle arc.
Essentially it is a namedtuple(center, radius, from_angle, to_angle, direction) with a bunch of helper methods
for measuring arc lengths and intersections.
The from_angle and to_angle of an arc must be represented in degrees.
The direction is a boolean, with True corresponding to counterclockwise (positive) direction, and False - clockwise (negative).
For convenience, the class defines a "sign" property, which is +1 if direction = True and -1 otherwise.
'''
def __init__(self, center, radius, from_angle, to_angle, direction):
'''Raises a ValueError if radius is negative.
>>> a = Arc((0, 0), -1, 0, 0, True)
Traceback (most recent call last):
...
ValueError: Arc's radius may not be negative
>>> a = Arc((0, 0), 0, 0, 0, True)
>>> a = Arc((0, 0), 1, 0, 0, True)
'''
self.center = np.asarray(center)
self.radius = float(radius)
if radius < 0.0:
raise ValueError("Arc's radius may not be negative")
self.from_angle = float(from_angle)
self.to_angle = float(to_angle)
self.direction = direction
self.sign = 1 if direction else -1
def length_degrees(self):
'''Computes the length of the arc in degrees.
The length computation corresponds to what you would expect if you would draw the arc using matplotlib taking direction into account.
>>> Arc((0,0), 1, 0, 0, True).length_degrees()
0.0
>>> Arc((0,0), 2, 0, 0, False).length_degrees()
0.0
>>> Arc((0,0), 3, 0, 1, True).length_degrees()
1.0
>>> Arc((0,0), 4, 0, 1, False).length_degrees()
359.0
>>> Arc((0,0), 5, 0, 360, True).length_degrees()
360.0
>>> Arc((0,0), 6, 0, 360, False).length_degrees()
0.0
>>> Arc((0,0), 7, 0, 361, True).length_degrees()
360.0
>>> Arc((0,0), 8, 0, 361, False).length_degrees()
359.0
>>> Arc((0,0), 9, 10, -10, True).length_degrees()
340.0
>>> Arc((0,0), 10, 10, -10, False).length_degrees()
20.0
>>> Arc((0,0), 1, 10, 5, True).length_degrees()
355.0
>>> Arc((0,0), 1, -10, -5, False).length_degrees()
355.0
>>> Arc((0,0), 1, 180, -180, True).length_degrees()
0.0
>>> Arc((0,0), 1, 180, -180, False).length_degrees()
360.0
>>> Arc((0,0), 1, -180, 180, True).length_degrees()
360.0
>>> Arc((0,0), 1, -180, 180, False).length_degrees()
0.0
>>> Arc((0,0), 1, 175, -175, True).length_degrees()
10.0
>>> Arc((0,0), 1, 175, -175, False).length_degrees()
350.0
'''
d_angle = self.sign * (self.to_angle - self.from_angle)
if (d_angle > 360):
return 360.0
elif (d_angle < 0):
return d_angle % 360.0
else:
return abs(d_angle) # Yes, abs() is needed, otherwise we get the weird "-0.0" output in the doctests
def length_radians(self):
'''Returns the length of the arc in radians.
>>> Arc((0,0), 1, 0, 0, True).length_radians()
0.0
>>> Arc((0,0), 2, 0, 360, True).length_radians()
6.283...
>>> Arc((0,0), 6, -18, 18, True).length_radians()
0.6283...
'''
return self.length_degrees() * np.pi / 180.0
def length(self):
'''Returns the actual length of the arc.
>>> Arc((0,0), 2, 0, 360, True).length()
12.566...
>>> Arc((0,0), 2, 90, 360, False).length()
3.1415...
>>> Arc((0,0), 0, 90, 360, True).length()
0.0
'''
return self.radius * self.length_radians()
def sector_area(self):
'''Returns the area of the corresponding arc sector.
>>> Arc((0,0), 2, 0, 360, True).sector_area()
12.566...
>>> Arc((0,0), 2, 0, 36, True).sector_area()
1.2566...
>>> Arc((0,0), 2, 0, 36, False).sector_area()
11.3097...
'''
return self.radius**2 / 2 * self.length_radians()
def segment_area(self):
'''Returns the area of the corresponding arc segment.
>>> Arc((0,0), 2, 0, 360, True).segment_area()
12.566...
>>> Arc((0,0), 2, 0, 180, True).segment_area()
6.283...
>>> Arc((0,0), 2, 0, 90, True).segment_area()
1.14159...
>>> Arc((0,0), 2, 0, 90, False).segment_area()
11.42477796...
>>> Arc((0,0), 2, 0, 0, False).segment_area()
0.0
>>> Arc((0, 9), 1, 89.99, 90, False).segment_area()
3.1415...
'''
theta = self.length_radians()
return self.radius**2 / 2 * (theta - np.sin(theta))
def angle_as_point(self, angle):
'''
Converts a given angle in degrees to the point coordinates on the arc's circle.
Inverse of point_to_angle.
>>> Arc((1, 1), 1, 0, 0, True).angle_as_point(0)
array([ 2., 1.])
>>> Arc((1, 1), 1, 0, 0, True).angle_as_point(90)
array([ 1., 2.])
>>> Arc((1, 1), 1, 0, 0, True).angle_as_point(-270)
array([ 1., 2.])
'''
angle_rad = angle * np.pi / 180.0
return self.center + self.radius * np.array([np.cos(angle_rad), np.sin(angle_rad)])
def start_point(self):
'''
Returns a 2x1 numpy array with the coordinates of the arc's start point.
>>> Arc((0, 0), 1, 0, 0, True).start_point()
array([ 1., 0.])
>>> Arc((0, 0), 1, 45, 0, True).start_point()
array([ 0.707..., 0.707...])
'''
return self.angle_as_point(self.from_angle)
def end_point(self):
'''
Returns a 2x1 numpy array with the coordinates of the arc's end point.
>>> np.all(Arc((0, 0), 1, 0, 90, True).end_point() - np.array([0, 1]) < tol)
True
'''
return self.angle_as_point(self.to_angle)
def mid_point(self):
'''
Returns the midpoint of the arc as a 1x2 numpy array.
'''
midpoint_angle = self.from_angle + self.sign*self.length_degrees() / 2
return self.angle_as_point(midpoint_angle)
def approximately_equal(self, arc, tolerance=tol):
'''
Returns true if the parameters of this arc are within <tolerance> of the parameters of the other arc, and the direction is the same.
Note that no angle simplification is performed (i.e. some arcs that might be equal in principle are not declared as such
by this method)
>>> Arc((0, 0), 10, 20, 30, True).approximately_equal(Arc((tol/2, tol/2), 10+tol/2, 20-tol/2, 30-tol/2, True))
True
>>> Arc((0, 0), 10, 20, 30, True).approximately_equal(Arc((0, 0), 10, 20, 30, False))
False
>>> Arc((0, 0), 10, 20, 30, True).approximately_equal(Arc((0, 0+tol), 10, 20, 30, True))
False
'''
return self.direction == arc.direction \
and np.all(abs(self.center - arc.center) < tolerance) and abs(self.radius - arc.radius) < tolerance \
and abs(self.from_angle - arc.from_angle) < tolerance and abs(self.to_angle - arc.to_angle) < tolerance
def point_as_angle(self, pt):
'''
Given a point located on the arc's circle, return the corresponding angle in degrees.
No check is done that the point lies on the circle
(this is essentially a convenience wrapper around _math.vector_angle_in_degrees)
>>> a = Arc((0, 0), 1, 0, 0, True)
>>> a.point_as_angle((1, 0))
0.0
>>> a.point_as_angle((1, 1))
45.0
>>> a.point_as_angle((0, 1))
90.0
>>> a.point_as_angle((-1, 1))
135.0
>>> a.point_as_angle((-1, 0))
180.0
>>> a.point_as_angle((-1, -1))
-135.0
>>> a.point_as_angle((0, -1))
-90.0
>>> a.point_as_angle((1, -1))
-45.0
'''
return vector_angle_in_degrees(np.asarray(pt) - self.center)
def contains_angle_degrees(self, angle):
'''
Returns true, if a point with the corresponding angle (given in degrees) is within the arc.
Does no tolerance checks (i.e. if the arc is of length 0, you must provide angle == from_angle == to_angle to get a positive answer here)
>>> a = Arc((0, 0), 1, 0, 0, True)
>>> assert a.contains_angle_degrees(0)
>>> assert a.contains_angle_degrees(360)
>>> assert not a.contains_angle_degrees(1)
>>> a = Arc((0, 0), 1, 170, -170, True)
>>> assert not a.contains_angle_degrees(165)
>>> assert a.contains_angle_degrees(170)
>>> assert a.contains_angle_degrees(175)
>>> assert a.contains_angle_degrees(180)
>>> assert a.contains_angle_degrees(185)
>>> assert a.contains_angle_degrees(190)
>>> assert not a.contains_angle_degrees(195)
>>> assert not a.contains_angle_degrees(-195)
>>> assert a.contains_angle_degrees(-190)
>>> assert a.contains_angle_degrees(-185)
>>> assert a.contains_angle_degrees(-180)
>>> assert a.contains_angle_degrees(-175)
>>> assert a.contains_angle_degrees(-170)
>>> assert not a.contains_angle_degrees(-165)
>>> assert a.contains_angle_degrees(-170 - 360)
>>> assert a.contains_angle_degrees(-190 - 360)
>>> assert a.contains_angle_degrees(170 + 360)
>>> assert not a.contains_angle_degrees(0)
>>> assert not a.contains_angle_degrees(100)
>>> assert not a.contains_angle_degrees(-100)
'''
_d = self.sign * (angle - self.from_angle) % 360.0
return (_d <= self.length_degrees())
def intersect_circle(self, center, radius):
'''
Given a circle, finds the intersection point(s) of the arc with the circle.
Returns a list of 2x1 numpy arrays. The list has length 0, 1 or 2, depending on how many intesection points there are.
If the circle touches the arc, it is reported as two intersection points (which are equal).
Points are ordered along the arc.
Intersection with the same circle as the arc's own (which means infinitely many points usually) is reported as no intersection at all.
>>> a = Arc((0, 0), 1, -60, 60, True)
>>> a.intersect_circle((1, 0), 1)
[array([ 0.5..., -0.866...]), array([ 0.5..., 0.866...])]
>>> a.intersect_circle((0.9, 0), 1)
[]
>>> a.intersect_circle((1,-0.1), 1)
[array([ 0.586..., 0.810...])]
>>> a.intersect_circle((1, 0.1), 1)
[array([ 0.586..., -0.810...])]
>>> a.intersect_circle((0, 0), 1) # Infinitely many intersection points
[]
>>> a.intersect_circle((2, 0), 1) # Touching point, hence repeated twice
[array([ 1., 0.]), array([ 1., 0.])]
>>> a = Arc((0, 0), 1, 60, -60, False) # Same arc, different direction
>>> a.intersect_circle((1, 0), 1)
[array([ 0.5..., 0.866...]), array([ 0.5..., -0.866...])]
>>> a = Arc((0, 0), 1, 120, -120, True)
>>> a.intersect_circle((-1, 0), 1)
[array([-0.5..., 0.866...]), array([-0.5..., -0.866...])]
>>> a.intersect_circle((-0.9, 0), 1)
[]
>>> a.intersect_circle((-1,-0.1), 1)
[array([-0.586..., 0.810...])]
>>> a.intersect_circle((-1, 0.1), 1)
[array([-0.586..., -0.810...])]
>>> a.intersect_circle((-2, 0), 1)
[array([-1., 0.]), array([-1., 0.])]
>>> a = Arc((0, 0), 1, -120, 120, False)
>>> a.intersect_circle((-1, 0), 1)
[array([-0.5..., -0.866...]), array([-0.5..., 0.866...])]
'''
intersections = circle_circle_intersection(self.center, self.radius, center, radius)
if intersections is None:
return []
# Check whether the points lie on the arc and order them accordingly
_len = self.length_degrees()
isections = [[self.sign * (self.point_as_angle(pt) - self.from_angle) % 360.0, pt] for pt in intersections]
# Try to find as many candidate intersections as possible (i.e. +- tol within arc limits)
# Unless arc's length is 360, interpret intersections just before the arc's starting point as belonging to the starting point.
if _len < 360.0 - tol:
for isec in isections:
if isec[0] > 360.0 - tol:
isec[0] = 0.0
isections = [(a, pt[0], pt[1]) for (a, pt) in isections if a < _len + tol or a > 360 - tol]
isections.sort()
return [np.array([b, c]) for (a, b, c) in isections]
def intersect_arc(self, arc):
'''
Given an arc, finds the intersection point(s) of this arc with that.
Returns a list of 2x1 numpy arrays. The list has length 0, 1 or 2, depending on how many intesection points there are.
Points are ordered along the arc.
Intersection with the arc along the same circle (which means infinitely many points usually) is reported as no intersection at all.
>>> a = Arc((0, 0), 1, -90, 90, True)
>>> a.intersect_arc(Arc((1, 0), 1, 90, 270, True))
[array([ 0.5 , -0.866...]), array([ 0.5 , 0.866...])]
>>> a.intersect_arc(Arc((1, 0), 1, 90, 180, True))
[array([ 0.5 , 0.866...])]
>>> a.intersect_arc(Arc((1, 0), 1, 121, 239, True))
[]
>>> a.intersect_arc(Arc((1, 0), 1, 120-tol, 240+tol, True)) # Without -tol and +tol the results differ on different architectures due to rounding (see Debian #813782).
[array([ 0.5 , -0.866...]), array([ 0.5 , 0.866...])]
'''
intersections = self.intersect_circle(arc.center, arc.radius)
isections = [pt for pt in intersections if arc.contains_angle_degrees(arc.point_as_angle(pt))]
return isections
def subarc(self, from_angle=None, to_angle=None):
'''
Creates a sub-arc from a given angle (or beginning of this arc) to a given angle (or end of this arc).
Verifies that from_angle and to_angle are within the arc and properly ordered.
If from_angle is None, start of this arc is used instead.
If to_angle is None, end of this arc is used instead.
Angles are given in degrees.
>>> a = Arc((0, 0), 1, 0, 360, True)
>>> a.subarc(None, None)
Arc([0.000, 0.000], 1.000, 0.000, 360.000, True, degrees=360.000)
>>> a.subarc(360, None)
Arc([0.000, 0.000], 1.000, 360.000, 360.000, True, degrees=0.000)
>>> a.subarc(0, None)
Arc([0.000, 0.000], 1.000, 0.000, 360.000, True, degrees=360.000)
>>> a.subarc(-10, None)
Arc([0.000, 0.000], 1.000, 350.000, 360.000, True, degrees=10.000)
>>> a.subarc(None, -10)
Arc([0.000, 0.000], 1.000, 0.000, 350.000, True, degrees=350.000)
>>> a.subarc(1, 359).subarc(2, 358).subarc()
Arc([0.000, 0.000], 1.000, 2.000, 358.000, True, degrees=356.000)
'''
if from_angle is None:
from_angle = self.from_angle
if to_angle is None:
to_angle = self.to_angle
cur_length = self.length_degrees()
d_new_from = self.sign * (from_angle - self.from_angle)
if (d_new_from != 360.0):
d_new_from = d_new_from % 360.0
d_new_to = self.sign * (to_angle - self.from_angle)
if (d_new_to != 360.0):
d_new_to = d_new_to % 360.0
# Gracefully handle numeric precision issues for zero-length arcs
if abs(d_new_from - d_new_to) < tol:
d_new_from = d_new_to
if d_new_to < d_new_from:
raise ValueError("Subarc to-angle must be smaller than from-angle.")
if d_new_to > cur_length + tol:
raise ValueError("Subarc to-angle must lie within the current arc.")
return Arc(self.center, self.radius, self.from_angle + self.sign*d_new_from, self.from_angle + self.sign*d_new_to, self.direction)
def subarc_between_points(self, p_from=None, p_to=None):
'''
Given two points on the arc, extract a sub-arc between those points.
No check is made to verify the points are actually on the arc.
It is basically a wrapper around subarc(point_as_angle(p_from), point_as_angle(p_to)).
Either p_from or p_to may be None to denote first or last arc endpoints.
>>> a = Arc((0, 0), 1, 0, 90, True)
>>> a.subarc_between_points((1, 0), (np.cos(np.pi/4), np.sin(np.pi/4)))
Arc([0.000, 0.000], 1.000, 0.000, 45.000, True, degrees=45.000)
>>> a.subarc_between_points(None, None)
Arc([0.000, 0.000], 1.000, 0.000, 90.000, True, degrees=90.000)
>>> a.subarc_between_points((np.cos(np.pi/4), np.sin(np.pi/4)))
Arc([0.000, 0.000], 1.000, 45.000, 90.000, True, degrees=45.000)
'''
a_from = self.point_as_angle(p_from) if p_from is not None else None
a_to = self.point_as_angle(p_to) if p_to is not None else None
return self.subarc(a_from, a_to)
def reversed(self):
'''
Returns a copy of this arc, with the direction flipped.
>>> Arc((0, 0), 1, 0, 360, True).reversed()
Arc([0.000, 0.000], 1.000, 360.000, 0.000, False, degrees=360.000)
>>> Arc((0, 0), 1, 175, -175, True).reversed()
Arc([0.000, 0.000], 1.000, -175.000, 175.000, False, degrees=10.000)
>>> Arc((0, 0), 1, 0, 370, True).reversed()
Arc([0.000, 0.000], 1.000, 370.000, 0.000, False, degrees=360.000)
'''
return Arc(self.center, self.radius, self.to_angle, self.from_angle, not self.direction)
def direction_vector(self, angle):
'''
Returns a unit vector, pointing in the arc's movement direction at a given (absolute) angle (in degrees).
No check is made whether angle lies within the arc's span (the results for angles outside of the arc's span )
Returns a 2x1 numpy array.
>>> a = Arc((0, 0), 1, 0, 90, True)
>>> assert all(abs(a.direction_vector(0) - np.array([0.0, 1.0])) < tol)
>>> assert all(abs(a.direction_vector(45) - np.array([ -0.70710678, 0.70710678])) < 1e-6)
>>> assert all(abs(a.direction_vector(90) - np.array([-1.0, 0.0])) < tol)
>>> assert all(abs(a.direction_vector(135) - np.array([-0.70710678, -0.70710678])) < 1e-6)
>>> assert all(abs(a.direction_vector(-180) - np.array([0.0, -1.0])) < tol)
>>> assert all(abs(a.direction_vector(-90) - np.array([1.0, 0.0])) < tol)
>>> a = a.reversed()
>>> assert all(abs(a.direction_vector(0) - np.array([0.0, -1.0])) < tol)
>>> assert all(abs(a.direction_vector(45) - np.array([ 0.70710678, -0.70710678])) < 1e-6)
>>> assert all(abs(a.direction_vector(90) - np.array([1.0, 0.0])) < tol)
>>> assert all(abs(a.direction_vector(135) - np.array([0.70710678, 0.70710678])) < 1e-6)
>>> assert all(abs(a.direction_vector(-180) - np.array([0.0, 1.0])) < tol)
>>> assert all(abs(a.direction_vector(-90) - np.array([-1.0, 0.0])) < tol)
'''
a = angle + self.sign * 90
a = a * np.pi / 180.0
return np.array([np.cos(a), np.sin(a)])
def fix_360_to_0(self):
'''
Sometimes we have to create an arc using from_angle and to_angle computed numerically.
If from_angle == to_angle, it may sometimes happen that a tiny discrepancy will make from_angle > to_angle, and instead of
getting a 0-length arc we end up with a 360-degree arc.
Sometimes we know for sure that a 360-degree arc is not what we want, and in those cases
the problem is easy to fix. This helper method does that. It checks whether from_angle and to_angle are numerically similar,
and if so makes them equal.
>>> a = Arc((0, 0), 1, 0, -tol/2, True)
>>> a
Arc([0.000, 0.000], 1.000, 0.000, -0.000, True, degrees=360.000)
>>> a.fix_360_to_0()
>>> a
Arc([0.000, 0.000], 1.000, -0.000, -0.000, True, degrees=0.000)
'''
if abs(self.from_angle - self.to_angle) < tol:
self.from_angle = self.to_angle
def lies_on_circle(self, center, radius):
'''Tests whether the arc circle's center and radius match the given ones within <tol> tolerance.
>>> a = Arc((0, 0), 1, 0, 0, False)
>>> a.lies_on_circle((tol/2, tol/2), 1+tol/2)
True
>>> a.lies_on_circle((tol/2, tol/2), 1-tol)
False
'''
return np.all(abs(np.asarray(center) - self.center) < tol) and abs(radius - self.radius) < tol
def __repr__(self):
return "Arc([%0.3f, %0.3f], %0.3f, %0.3f, %0.3f, %s, degrees=%0.3f)" \
% (self.center[0], self.center[1], self.radius, self.from_angle, self.to_angle, self.direction, self.length_degrees())
|