File: PKG-INFO

package info (click to toggle)
python-matplotlib-venn 1.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 340 kB
  • sloc: python: 1,514; makefile: 8
file content (216 lines) | stat: -rw-r--r-- 8,954 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
Metadata-Version: 2.1
Name: matplotlib-venn
Version: 1.1.1
Summary: Functions for plotting area-proportional two- and three-way Venn diagrams in matplotlib.
Home-page: https://github.com/konstantint/matplotlib-venn
Author: Konstantin Tretyakov
Author-email: kt@umn.ee
License: MIT
Keywords: matplotlib plotting charts venn-diagrams
Platform: Platform Independent
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering :: Visualization
Provides-Extra: shapely
License-File: LICENSE

====================================================
Venn diagram plotting routines for Python/Matplotlib
====================================================

.. image::  https://travis-ci.org/konstantint/matplotlib-venn.png?branch=master
   :target: https://travis-ci.org/konstantint/matplotlib-venn

Routines for plotting area-weighted two- and three-circle venn diagrams.

Installation
------------

Install the package as usual via ``pip``::

    $ python -m pip install matplotlib-venn

Since version 1.1.0 the package includes an extra "cost based" layout algorithm for `venn3` diagrams,
that relies on the `shapely` package, which is not installed as a default dependency. If you need the
new algorithm (or just have nothing against installing `shapely` along the way), instead do::

    $ python -m pip install "matplotlib-venn[shapely]"

It is quite probable that `shapely` will become a required dependency eventually in one of the future versions.

Dependencies
------------

- ``numpy``,
- ``scipy``,
- ``matplotlib``,
- ``shapely`` (optional).

Usage
-----
The package provides four main functions: ``venn2``,
``venn2_circles``, ``venn3`` and ``venn3_circles``.

The functions ``venn2`` and ``venn2_circles`` accept as their only
required argument a 3-element tuple ``(Ab, aB, AB)`` of subset sizes,
and draw a two-circle venn diagram with respective region areas, e.g.::

    venn2(subsets = (3, 2, 1))

In this example, the region, corresponding to subset ``A and not B`` will
be three times larger in area than the region, corresponding to subset ``A and B``.

You can also provide a tuple of two ``set`` or ``Counter`` (i.e. multi-set)
objects instead (new in version 0.7), e.g.::

    venn2((set(['A', 'B', 'C', 'D']), set(['D', 'E', 'F'])))

Similarly, the functions ``venn3`` and ``venn3_circles`` take a
7-element tuple of subset sizes ``(Abc, aBc, ABc, abC, AbC, aBC,
ABC)``, and draw a three-circle area-weighted Venn
diagram: 

.. image:: https://user-images.githubusercontent.com/13646666/87874366-96924800-c9c9-11ea-8b06-ac1336506b59.png

Alternatively, a tuple of three ``set`` or ``Counter`` objects may be provided.

The functions ``venn2`` and ``venn3`` draw the diagrams as a collection of colored
patches, annotated with text labels. The functions ``venn2_circles`` and
``venn3_circles`` draw just the circles.

The functions ``venn2_circles`` and ``venn3_circles`` return the list of ``matplotlib.patch.Circle`` objects that may be tuned further
to your liking. The functions ``venn2`` and ``venn3`` return an object of class ``VennDiagram``,
which gives access to constituent patches, text elements, and (since
version 0.7) the information about the centers and radii of the
circles.

Basic Example::

    from matplotlib_venn import venn2
    venn2(subsets = (3, 2, 1))

For the three-circle case::

    from matplotlib_venn import venn3
    venn3(subsets = (1, 1, 1, 2, 1, 2, 2), set_labels = ('Set1', 'Set2', 'Set3'))

A more elaborate example::

    from matplotlib import pyplot as plt
    import numpy as np
    from matplotlib_venn import venn3, venn3_circles
    plt.figure(figsize=(4,4))
    v = venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'))
    v.get_patch_by_id('100').set_alpha(1.0)
    v.get_patch_by_id('100').set_color('white')
    v.get_label_by_id('100').set_text('Unknown')
    v.get_label_by_id('A').set_text('Set "A"')
    c = venn3_circles(subsets=(1, 1, 1, 1, 1, 1, 1), linestyle='dashed')
    c[0].set_lw(1.0)
    c[0].set_ls('dotted')
    plt.title("Sample Venn diagram")
    plt.annotate('Unknown set', xy=v.get_label_by_id('100').get_position() - np.array([0, 0.05]), xytext=(-70,-70),
                 ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='gray', alpha=0.1),
                 arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray'))
    plt.show()

An example with multiple subplots::

    from matplotlib_venn import venn2, venn2_circles
    figure, axes = plt.subplots(2, 2)
    venn2(subsets={'10': 1, '01': 1, '11': 1}, set_labels = ('A', 'B'), ax=axes[0][0])
    venn2_circles((1, 2, 3), ax=axes[0][1])
    venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C'), ax=axes[1][0])
    venn3_circles({'001': 10, '100': 20, '010': 21, '110': 13, '011': 14}, ax=axes[1][1])
    plt.show()

Perhaps the most common use case is generating a Venn diagram given
three sets of objects::

    set1 = set(['A', 'B', 'C', 'D'])
    set2 = set(['B', 'C', 'D', 'E'])
    set3 = set(['C', 'D',' E', 'F', 'G'])

    venn3([set1, set2, set3], ('Set1', 'Set2', 'Set3'))
    plt.show()

Tuning the diagram layout
-------------------------

Note that for a three-circle venn diagram it is not in general
possible to achieve exact correspondence between the required set
sizes and region areas. The default layout algorithm aims to correctly represent:

  * Relative areas of the full individual sets (A, B, C).
  * Relative areas of pairwise intersections of sets (A&B, A&C, B&C, not to be confused with the regions
    A&B&~C, A&~B&C, ~A&B&C, on the diagram).

Sometimes the result is unsatisfactory and either the area weighting or the layout logic needs
to be tuned.

The area weighing can be adjusted by providing a `fixed_subset_sizes` argument to the `DefaultLayoutAlgorithm`::

    from matplotlib_venn.layout.venn2 import DefaultLayoutAlgorithm
    venn2((1,2,3), layout_algorithm=DefaultLayoutAlgorithm(fixed_subset_sizes=(1,1,1)))

    from matplotlib_venn.layout.venn3 import DefaultLayoutAlgorithm
    venn3((7,6,5,4,3,2,1), layout_algorithm=DefaultLayoutAlgorithm(fixed_subset_sizes=(1,1,1,1,1,1,1)))

In the above examples the diagram regions will be plotted as if `venn2((1,1,1))` and `venn3((1,1,1,1,1,1,1))` were
invoked, yet the actual numbers will be `(1,2,3)` and `(7,6,5,4,3,2,1)` respectively.

The diagram can be tuned further by switching the layout algorithm to a different implementation.
At the moment the package offers an alternative layout algorithm for `venn3` diagrams that lays the circles out by
optimizing a user-provided *cost function*. The following examples illustrate its usage::

    from matplotlib_venn.layout.venn3 import cost_based
    subset_sizes = (100,200,10000,10,20,3,1)
    venn3(subset_sizes, layout_algorithm=cost_based.LayoutAlgorithm())

    alg = cost_based.LayoutAlgorithm(cost_fn=cost_based.WeightedAggregateCost(transform_fn=lambda x: x))
    venn3(subset_sizes, layout_algorithm=alg)

    alg = cost_based.LayoutAlgorithm(cost_fn=cost_based.WeightedAggregateCost(weights=(0,0,0,1,1,1,1)))
    venn3(subset_sizes, layout_algorithm=alg)

The default "pairwise" algorithm is, theoretically, a special case of the cost-based method with the respective cost function::

    alg = cost_based.LayoutAlgorithm(cost_fn=cost_based.pairwise_cost)
    venn3(subset_sizes, layout_algorithm=alg)

(The latter plot will be close, but not perfectly equal to the outcome of `DefaultLayoutAlgorithm()`).

Note that the import::

    from matplotlib_venn.layout.venn3 import cost_based

will fail unless you have the optional `shapely` package installed (see "Installation" above).


Questions
---------

* If you ask your questions at `StackOverflow <http://stackoverflow.com/>`_ and tag them 
  `matplotlib-venn <http://stackoverflow.com/questions/tagged/matplotlib-venn>`_, chances are high you could get
  an answer from the maintainer of this package.

See also
--------

* Report issues and submit fixes at Github:
  https://github.com/konstantint/matplotlib-venn
  
  Check out the ``DEVELOPER-README.rst`` for development-related notes.
* Some alternative means of plotting a Venn diagram (as of
  October 2012) are reviewed in the blog post:
  http://fouryears.eu/2012/10/13/venn-diagrams-in-python/
* The `matplotlib-subsets
  <https://pypi.python.org/pypi/matplotlib-subsets>`_ package
  visualizes a hierarchy of sets as a tree of rectangles.
* The `matplotlib_set_diagrams <https://pypi.org/project/matplotlib-set-diagrams>`_ package
  is a GPL-licensed alternative that offers a different layout algorithm, which supports more than
  three sets and provides a cool ability to incorporate wordclouds into your Venn (Euler) diagrams.