1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
"""
Cost optimization-based layout algorithm for 3-way Venn diagrams.
Unlike the rest of the code in the package, this implementation depends on the shapely library.
To include the dependency, the library should be installed as
```
pip install 'matplotlib-venn[shapely]'
```
(Shapely will quite probably become a core dependency in a future version).
Usage
-----
This layout algorithm makes most sense in the cases when the default, "pairwise" layout
does not work well enough for your data (which is usually the case for very skewed subset sizes).
In this case just try doing:
>>> from matplotlib_venn.layout.venn3 import cost_based
>>> from matplotlib_venn import venn3
>>> subset_sizes = (100,200,10000,10,20,3,1)
>>> venn3(subset_sizes, layout_algorithm=cost_based.LayoutAlgorithm())
<matplotlib_venn...VennDiagram object at ...>
You may further tune the behaviour of the algorithm by redefining the cost function.
By default the algorithm tries to optimize the sum of |log(1+target_size)-log(1+actual_size)|
over all 7 regions. If for some reason you believe |target_size - actual_size| should work better
for your case, you can achieve it as follows:
>>> alg = cost_based.LayoutAlgorithm(cost_fn=cost_based.WeightedAggregateCost(transform_fn=lambda x: x))
>>> venn3(subset_sizes, layout_algorithm=alg)
<matplotlib_venn...VennDiagram object at ...>
Alternatively, you may want the optimization to give more weight to some of the regions or even ignore some of the
larger ones.
>>> alg = cost_based.LayoutAlgorithm(cost_fn=cost_based.WeightedAggregateCost(weights=(0,0,0,1,1,1,1)))
>>> venn3(subset_sizes, layout_algorithm=alg)
<matplotlib_venn...VennDiagram object at ...>
In theory, if the cost is defined as a difference in sizes of "pairwise" regions (AB, BC, AC), the result of optimizing
it should be equivalent to what the default ('pairwise') algorithm does. To play with this idea, the module defines the
respective `pairwise_cost` function. The result is not exactly the same as that of the default algorithm, but it would
nearly always succeed, even when the default algorithm sometimes fails. E.g.:
>>> subset_sizes = (1, 0, 0, 650, 0, 76, 13)
>>> # Fails
>>> venn3(subset_sizes) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
matplotlib_venn._region.VennRegionException: Invalid configuration of circular regions (holes are not supported).
>>> # Succeeds, producing what the default algorithm should have produced
>>> venn3(subset_sizes, layout_algorithm=cost_based.LayoutAlgorithm(cost_fn=cost_based.pairwise_cost))
<matplotlib_venn...VennDiagram object at ...>
NB: This implementation is still in "alpha" stage, the code and behaviour may change in backwards-incompatible ways.
Copyright 2024, Konstantin Tretyakov.
http://kt.era.ee/
Based on a prototype by Paul Brodersen (https://github.com/konstantint/matplotlib-venn/issues/35).
Licensed under MIT license.
"""
from typing import Callable, Optional, Sequence
import warnings
import numpy as np
from shapely.geometry import Point
from scipy.optimize import minimize, NonlinearConstraint
from scipy.spatial.distance import pdist
from matplotlib_venn._math import NUMERIC_TOLERANCE
from matplotlib_venn.layout.venn3 import pairwise
from matplotlib_venn.layout.api import (
LayoutException,
Point2D,
SubsetSizes,
VennLayout,
VennLayoutAlgorithm,
)
def _initialize_centers(radii: np.ndarray) -> np.ndarray:
"""Initialize centers on a small circle around (0, 0).
The centers are positioned at 90+60, 90-60, -90, matching the
positioning logic of the pairwise algorithm.
>>> centers = _initialize_centers(np.asarray([1, 2, 3]))
>>> np.allclose(centers, \
np.array([[-0.866, 0.5], \
[ 0.866, 0.5], \
[ 0, -1]]), atol=0.001)
True
"""
angles = 2 * np.pi * np.array([1 / 12 + 1 / 3, 1 / 12, 1 / 12 + 2 / 3])
return np.vstack([np.cos(angles), np.sin(angles)]).T * np.min(radii)
def _normalize_subset_sizes(
subset_sizes: SubsetSizes, normalize_to: float = 1.0
) -> SubsetSizes:
"""Normalize provided subset sizes to areas with total area equal to <normalize_to>.
If the total area is less than _minimal_area falls back to a normalized version of the
'unweighted' set of areas (1,1,1,1,1,1,1).
>>> _normalize_subset_sizes((1,0,0,0,0,0,0))
array([1., 0., 0., 0., 0., 0., 0.])
>>> _normalize_subset_sizes((1,1,0,0,0,0,0))
array([0.5, 0.5, 0. , 0. , 0. , 0. , 0. ])
>>> _normalize_subset_sizes((0,0,0,0,0,0,0))
array([0.14..., 0.14..., 0.14..., 0.14..., 0.14..., 0.14..., 0.14...])
"""
areas = np.array(np.abs(subset_sizes), float)
total_area = np.sum(areas)
if np.abs(total_area) < NUMERIC_TOLERANCE:
warnings.warn(
"All regions have zero area. Falling back to an unweighted diagram."
)
return _normalize_subset_sizes((1, 1, 1, 1, 1, 1, 1), normalize_to)
else:
return areas / total_area * normalize_to
def _compute_radii(areas: SubsetSizes) -> np.ndarray:
"""Compute radii of the three circles based on a given SubsetSizes vector.
Returns an array of three radii for the three circles.
>>> regions = np.pi*np.array([1, 2, 0, 3, 0, 0, 0])**2
>>> _compute_radii(regions)
array([1., 2., 3.])
>>> deltas = np.array([-0.3, -0.3, 0.1, -0.3, 0.1, 0.1, 0.1])
>>> _compute_radii(regions + deltas)
array([1., 2., 3.])
"""
(Abc, aBc, ABc, abC, AbC, aBC, ABC) = areas
A = Abc + ABc + AbC + ABC
B = aBc + ABc + aBC + ABC
C = abC + AbC + aBC + ABC
return np.sqrt(np.array([A, B, C]) / np.pi)
def _compute_subset_areas(centers: np.ndarray, radii: np.ndarray) -> SubsetSizes:
"""Given centers and radii of a venn3 diagram, return the respective subset areas.
>>> areas = _compute_subset_areas(np.asarray([[0,0], [2,2], [4,4]]), np.asarray([1, 1, 1]))
>>> np.allclose(areas, [np.pi, np.pi, 0, np.pi, 0, 0, 0], atol=0.01)
True
>>> from matplotlib_venn.layout.venn3 import DefaultLayoutAlgorithm
>>> layout = DefaultLayoutAlgorithm()((1,1,1,1,1,1,1))
>>> areas = _compute_subset_areas(\
np.asarray([c.asarray() for c in layout.centers]),\
np.asarray(layout.radii))
>>> layout = DefaultLayoutAlgorithm()(areas)
>>> new_areas = _compute_subset_areas(\
np.asarray([c.asarray() for c in layout.centers]),\
np.asarray(layout.radii))
>>> np.allclose(areas, new_areas, atol=0.01)
True
"""
a, b, c = [Point(*center).buffer(radius) for center, radius in zip(centers, radii)]
regions = [
a.difference(b).difference(c), # Abc
b.difference(a).difference(c), # aBc
a.intersection(b).difference(c), # ABc
c.difference(a).difference(b), # abC
a.intersection(c).difference(b), # AbC
b.intersection(c).difference(a), # aBC
a.intersection(b).intersection(c), # ABC
]
return np.array([region.area for region in regions])
# A cost function is a callable that accepts the desired subset sizes
# and the actual sizes (for the current layout) and returns the cost ("loss")
# of the discrepancy.
CostFunction = Callable[[SubsetSizes, SubsetSizes], float]
class WeightedAggregateCost(CostFunction):
"""A cost function that aggregates differences over all regions.
The function computes:
np.dot(weights, np.abs(fn(target_size) - fn(current_size))**power).
>>> fn = WeightedAggregateCost()
>>> fn([1]*7, [1]*7)
0.0
>>> fn([1]*7, [0]*7)
7.0
>>> fn = WeightedAggregateCost(lambda x: x**2)
>>> fn([1]*7, [1]*7)
0.0
>>> fn([2]*7, [0]*7)
28.0
>>> fn = WeightedAggregateCost(weights=(1,2,3))
>>> fn([1,2,0], [0,0,3])
14.0
>>> fn = WeightedAggregateCost(weights=(0,0,1), power=2)
>>> fn([1,2,0], [0,0,3])
9.0
"""
def __init__(
self,
transform_fn: Callable[[np.ndarray], np.ndarray] = lambda x: x,
weights: Sequence[float] = (1, 1, 1, 1, 1, 1, 1),
power: float = 1,
):
self.transform_fn = transform_fn
self.weights = np.asarray(weights)
self.power = power
def __call__(self, target_areas: SubsetSizes, current_areas: SubsetSizes) -> float:
targets = self.transform_fn(np.asarray(target_areas))
current = self.transform_fn(np.asarray(current_areas))
return float(np.dot(self.weights, np.abs(targets - current) ** self.power))
def pairwise_cost(target_areas: SubsetSizes, actual_areas: SubsetSizes) -> float:
"""The cost, computed as the absolute difference between pairwise (A&B, B&C, A&C) areas.
This matches the logic of the default ("pairwise") layout algorithm and thus
produces mostly the same results (not exactly the same due to some randomness
involved in the iterative nature of the optimization).
It is here primarily for experimentation and "completeness' sake".
>>> pairwise_cost([1]*7, [1]*7)
0.0
>>> pairwise_cost([1]*7, (2,2,1,2,1,1,1))
0.0
>>> pairwise_cost([1]*7, (2,2,1,2,1,1,1.5))
1.5
>>> pairwise_cost([1]*7, (2,2,1.5,2,1,1,1))
0.5
>>> pairwise_cost([1]*7, (2,2,1.5,2,1.1,1,1))
0.6...
"""
(tAbc, taBc, tABc, tabC, tAbC, taBC, tABC) = target_areas
(Abc, aBc, ABc, abC, AbC, aBC, ABC) = actual_areas
dAB = tABC + tABc - (ABC + ABc)
dBC = tABC + taBC - (ABC + aBC)
dAC = tABC + tAbC - (ABC + AbC)
return float(abs(dAB) + abs(dBC) + abs(dAC))
class LayoutAlgorithm(VennLayoutAlgorithm):
"""3-way Venn layout that positions circles by numerically optimizing a given discrepancy cost.
>>> alg = LayoutAlgorithm()
>>> layout = alg((1,1,1,1,1,1,1), ("A", "B", "C"))
>>> np.allclose([c.asarray() for c in layout.centers], [[-0.13, 0.07], [0.13, 0.077], [-1e-6, -0.15]], atol=1e-02)
True
>>> np.allclose(layout.radii, [0.42, 0.42, 0.42], atol=1e-02)
True
"""
def __init__(self, cost_fn: Optional[CostFunction] = None, fallback: bool = True):
"""Initialize the cost-based layout algorithm.
Args:
cost_fn: A cost function to be optimized.
Default is WeightedAggregateCost(lambda x: np.log(1 + x)).
This has been determined to work well enough in practice.
fallback: Whether to fall back to the default ("pairwise") layout
algorithm if optimization does not converge. True by default.
If there is no fallback, a LayoutException will be raised if
optimization fails.
"""
self._cost_fn = cost_fn or WeightedAggregateCost(lambda x: np.log(1 + x))
self._fallback = fallback
# This is a convenience field that will carry the result of the most
# recent "minimize" call.
self.last_optimization_result = None
def __call__(
self,
subsets: SubsetSizes,
set_labels: Optional[Sequence[str]] = None,
) -> VennLayout:
target_areas = _normalize_subset_sizes(subsets)
radii = _compute_radii(target_areas)
centers = _initialize_centers(radii)
# We will position the circles by optimizing this cost function ...
def _cost_function(centers_flattened: np.ndarray) -> np.ndarray:
"""Computes the cost of positioning circles at given centers."""
current_areas = _compute_subset_areas(
centers_flattened.reshape(-1, 2), radii
)
return self._cost_fn(target_areas, current_areas)
# ... while making sure the pairwise distances between circles do not exceed sum of radii:
# (this is the order in which pdist computes pairwise distances).
upper_bounds = np.array(
[radii[0] + radii[1], radii[0] + radii[2], radii[1] + radii[2]]
)
# ... and are not below differences between radii:
lower_bounds = np.abs(
np.array([radii[0] - radii[1], radii[0] - radii[2], radii[1] - radii[2]])
)
def _pairwise_distances(centers_flattened: np.ndarray) -> np.ndarray:
return pdist(np.reshape(centers_flattened, (-1, 2)))
result = minimize(
_cost_function,
centers.flatten(),
method="SLSQP",
constraints=[
NonlinearConstraint(
_pairwise_distances, ub=upper_bounds, lb=lower_bounds
)
],
)
self.last_optimization_result = result
if not result.success:
warnings.warn("Optimization failed: {0}".format(result.message))
if self._fallback:
# Fall back to _pairwise
return pairwise.LayoutAlgorithm()(subsets, set_labels)
else:
raise LayoutException("Optimization failed: {0}".format(result.message))
centers = result.x.reshape((-1, 2))
result = VennLayout(
centers=[Point2D(*center) for center in centers],
radii=list(map(float, radii)),
)
# TODO: We reuse the pairwise algorithm implementation for set label positioning.
# It does not always do the most correct job.
pairwise._compute_set_labels_positions(result)
return result
|