1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MaxNLocator
from matplotlib.colors import BoundaryNorm
from mcstasscript.instrument_diagnostics.diagnostics_instrument import DiagnosticsInstrument
from mcstasscript.interface.functions import name_search
from mcstasscript.data.data import McStasDataBinned
from mcstasscript.helper.plot_helper import _plot_fig_ax
class IntensityDiagnostics(DiagnosticsInstrument):
def __init__(self, instr):
super().__init__(instr)
self.data = None
self.data_dim = None
self.monitors = None
def add_monitor(self, before, options):
name = "I_before_" + before.name
mon = self.instr.add_component(name, "Monitor_nD", before=before)
mon.set_parameters(restore_neutron=1,
xwidth=100, yheight=100,
options=options,
filename='"' + name + ".diag" + '"')
mon.set_AT(before.AT_data, RELATIVE=before.AT_reference)
if before.ROTATED_specified:
mon.set_ROTATED(before.ROTATED_data, RELATIVE=before.ROTATED_reference)
return name
def run_general(self, variable=None, limits=None):#, start=None, end=None):
self.reset_instr()
self.remove_previous_use()
if limits is None:
limit_string = "auto"
else:
if not isinstance(limits, list) or len(limits) != 2:
raise TypeError("limits has to be a list of length 2.")
limit_string = f"limits=[{limits[0]},{limits[1]}]"
if variable is None:
options = f'"square boarders intensity"'
self.data_dim = 0
else:
options = f'"square {variable} {limit_string} bins=300"'
self.data_dim = 1
self.monitors = []
for comp in self.component_list[1:]:
mon_name = self.add_monitor(before=comp, options=options)
self.monitors.append((mon_name, comp.name))
self.correct_target_index()
self.data = self.instr.backengine()
def run(self):#, start=None, end=None):
self.reset_instr()
self.remove_previous_use()
options = f'"square boarders intensity"'
self.monitors = []
for comp in self.component_list[1:]:
mon_name = self.add_monitor(before=comp, options=options)
self.monitors.append((mon_name, comp.name))
self.correct_target_index()
self.data = self.instr.backengine()
def plot(self, figsize=None, ax=None, fig=None, show_comp_names=True,
y_tick_positions=None, ylimits=None):
if self.data_dim == 0:
self.plot_0D(figsize=figsize, ax=ax, fig=fig,
show_comp_names=show_comp_names,
y_tick_positions=y_tick_positions,
ylimits=ylimits)
elif self.data_dim == 1:
self.plot_1D(figsize=figsize, ax=ax, fig=fig,
show_comp_names=show_comp_names,
y_tick_positions=y_tick_positions,
ylimits=ylimits)
def plot_1D(self, figsize=None, ax=None, fig=None, show_comp_names=True,
y_tick_positions=None, ylimits=None):
if figsize is None:
figsize = (8, len(self.component_list) / 5 + 1)
data_sets = []
for I_monitor_name, component_name in self.monitors:
mon_data = name_search(I_monitor_name, self.data)
intensity = mon_data.Intensity
axis = mon_data.xaxis
data_sets.append({"name": component_name, "I": intensity, "axis": axis})
if y_tick_positions is None:
y_positions = np.linspace(1, len(data_sets), len(data_sets))
y_sep = y_positions[1] - y_positions[0]
y_positions = np.append(y_positions, y_positions[-1] + y_sep)
else:
#y_tick_positions.reverse()
y_positions = y_tick_positions
# Find min and max for axis
for index, data_set in enumerate(data_sets):
if index == 0:
max_axis = max(data_set["axis"])
min_axis = min(data_set["axis"])
else:
max_axis = max(max(data_set["axis"]), max_axis)
min_axis = min(min(data_set["axis"]), min_axis)
# New axis from min to max
n_bins = 300
axis = np.linspace(min_axis, max_axis, n_bins)
sep = axis[1] - axis[0]
bin_axis = np.append(axis - 0.5 * sep, axis[-1] + sep)
intensities = np.zeros((len(data_sets), len(axis)))
for index, data_set in enumerate(data_sets):
new_bins = np.digitize(data_set["axis"], bin_axis)
boarder_bins = np.where(new_bins == n_bins)
new_bins[boarder_bins] -= 1
intensities[index, new_bins] += data_set["I"]
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
component_names = [x.name for x in self.original_instr.make_component_subset()]
component_names.reverse()
if not show_comp_names:
component_names = [""] * len(component_names)
metadata = mon_data.metadata
metadata.dimension = [len(axis), len(y_positions) - 1]
metadata.limits = [0, 0, 0, 0]
metadata.limits[0] = min(axis)
metadata.limits[1] = max(axis)
metadata.limits[2] = min(y_positions)
metadata.limits[3] = max(y_positions)
display_data = np.flip(intensities, 0)
data = McStasDataBinned(metadata, display_data, np.zeros((1, 1)), np.zeros((1, 1)))
data.set_plot_options(show_colorbar=False, log=True, orders_of_mag=5)
data.set_ylabel("")
_plot_fig_ax(data, fig, ax)
ax.set_yticks(y_positions)
ax.set_yticklabels(component_names, fontsize=18)
ax.set_xlabel(mon_data.metadata.xlabel, fontsize=18)
def plot_0D(self, figsize=None, ax=None, fig=None, show_comp_names=True,
y_tick_positions=None, ylimits=None):
if figsize is None:
figsize = (8, len(self.component_list)/5 + 1)
intensities = []
ray_counts = []
component_names = []
indicies = []
index = 0
for I_monitor_name, component_name in self.monitors:
mon_data = name_search(I_monitor_name, self.data)
values = mon_data.metadata.info["values"].split()
# values contain strings of: Intensity, Error, Ncount
intensities.append(float(values[0]))
ray_counts.append(float(values[2]))
component_names.append(component_name)
indicies.append(index)
index += 1
# Extend with the last one
intensities.append(intensities[-1])
ray_counts.append(ray_counts[-1])
indicies.append(index)
component_names = [self.component_list[0].name] + component_names
if not show_comp_names:
component_names = [""] * len(component_names)
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
intensities.reverse()
ray_counts.reverse()
component_names.reverse()
if y_tick_positions is None:
y_positions = indicies
else:
y_tick_positions.reverse()
y_positions = y_tick_positions
# Ensure x scale for intensity and n count share same tick marks
I_limits, N_limits = common_range_limits(intensities, ray_counts)
ax.step(intensities, y_positions, where="post", color="k", zorder=3.5)
ax.set_yticks(y_positions)
ax.set_yticklabels(component_names, fontsize=18)
ax.set_xlabel("Intensity [n/s]", fontsize=18, color="k")
ax.set_xscale("log", nonpositive='clip')
ax.xaxis.set_tick_params(labelsize=16)
ax.set_xlim(I_limits)
if ylimits is None:
ax.set_ylim([-0.5, index + 0.5])
else:
ax.set_ylim(ylimits)
ax.grid(True)
ax2 = ax.twiny()
ax2.step(ray_counts, y_positions, where="post", color="g", linestyle="--", zorder=3.6)
ax2.set_xlabel("Ray count", fontsize=18, color="g")
ax2.set_xscale("log", nonpositive='clip')
ax2.xaxis.set_tick_params(labelsize=16, colors="g")
ax2.set_xlim(N_limits)
def common_range_limits(data_I, data_N):
# Convert to numpy
data_I = np.array(data_I)
data_I_nonzero = data_I[np.nonzero(data_I)]
data_N = np.array(data_N)
data_N_nonzero = data_N[np.nonzero(data_N)]
max_I = max(data_I_nonzero)
min_I = min(data_I_nonzero)
I_orders_of_mag = np.log10(max_I) - np.log10(min_I)
max_N = max(data_N_nonzero)
min_N = min(data_N_nonzero)
N_orders_of_mag = np.log10(max_N) - np.log10(min_N)
I_is_largest = I_orders_of_mag > N_orders_of_mag
if I_is_largest:
# Use intensity scale
max_large = max_I
min_large = min_I
max_small = max_N
else:
max_large = max_N
min_large = min_N
max_small = max_I
log_extra = 0.1 # Extra scale to avoid having data just at the edge
# Round I scale up
log_large_scale_max = np.ceil(np.log10(max_large)) + log_extra
log_large_scale_min = np.floor(np.log10(min_large))
large_limits = [10 ** log_large_scale_min, 10 ** log_large_scale_max]
# Find how many orders of mag this cover
large_orders_of_mag = log_large_scale_max - log_large_scale_min
# Apply same to ray count
log_small_scale_max = np.ceil(np.log10(max_small)) + log_extra
log_small_scale_min = log_small_scale_max - large_orders_of_mag
small_limits = [10 ** log_small_scale_min, 10 ** log_small_scale_max]
if I_is_largest:
I_limits = large_limits
N_limits = small_limits
else:
I_limits = small_limits
N_limits = large_limits
return I_limits, N_limits
|