File: intensity_diagnostics.py

package info (click to toggle)
python-mcstasscript 0.0.46%2Bgit20250402111921.bfa5a26-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 11,440 kB
  • sloc: python: 13,421; makefile: 14
file content (279 lines) | stat: -rw-r--r-- 9,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MaxNLocator
from matplotlib.colors import BoundaryNorm

from mcstasscript.instrument_diagnostics.diagnostics_instrument import DiagnosticsInstrument
from mcstasscript.interface.functions import name_search
from mcstasscript.data.data import McStasDataBinned
from mcstasscript.helper.plot_helper import _plot_fig_ax

class IntensityDiagnostics(DiagnosticsInstrument):
    def __init__(self, instr):
        super().__init__(instr)

        self.data = None
        self.data_dim = None
        self.monitors = None

    def add_monitor(self, before, options):
        name = "I_before_" + before.name
        mon = self.instr.add_component(name, "Monitor_nD", before=before)

        mon.set_parameters(restore_neutron=1,
                           xwidth=100, yheight=100,
                           options=options,
                           filename='"' + name + ".diag" + '"')

        mon.set_AT(before.AT_data, RELATIVE=before.AT_reference)
        if before.ROTATED_specified:
            mon.set_ROTATED(before.ROTATED_data, RELATIVE=before.ROTATED_reference)

        return name

    def run_general(self, variable=None, limits=None):#, start=None, end=None):
        self.reset_instr()
        self.remove_previous_use()

        if limits is None:
            limit_string = "auto"
        else:
            if not isinstance(limits, list) or len(limits) != 2:
                raise TypeError("limits has to be a list of length 2.")
            limit_string = f"limits=[{limits[0]},{limits[1]}]"

        if variable is None:
            options = f'"square boarders intensity"'
            self.data_dim = 0
        else:
            options = f'"square {variable} {limit_string} bins=300"'
            self.data_dim = 1

        self.monitors = []
        for comp in self.component_list[1:]:
            mon_name = self.add_monitor(before=comp, options=options)
            self.monitors.append((mon_name, comp.name))

        self.correct_target_index()

        self.data = self.instr.backengine()

    def run(self):#, start=None, end=None):
        self.reset_instr()
        self.remove_previous_use()

        options = f'"square boarders intensity"'
        self.monitors = []
        for comp in self.component_list[1:]:
            mon_name = self.add_monitor(before=comp, options=options)
            self.monitors.append((mon_name, comp.name))

        self.correct_target_index()

        self.data = self.instr.backengine()

    def plot(self, figsize=None, ax=None, fig=None, show_comp_names=True,
             y_tick_positions=None, ylimits=None):

        if self.data_dim == 0:
            self.plot_0D(figsize=figsize, ax=ax, fig=fig,
                         show_comp_names=show_comp_names,
                         y_tick_positions=y_tick_positions,
                         ylimits=ylimits)
        elif self.data_dim == 1:
            self.plot_1D(figsize=figsize, ax=ax, fig=fig,
                         show_comp_names=show_comp_names,
                         y_tick_positions=y_tick_positions,
                         ylimits=ylimits)

    def plot_1D(self, figsize=None, ax=None, fig=None, show_comp_names=True,
                y_tick_positions=None, ylimits=None):

        if figsize is None:
            figsize = (8, len(self.component_list) / 5 + 1)

        data_sets = []
        for I_monitor_name, component_name in self.monitors:
            mon_data = name_search(I_monitor_name, self.data)
            intensity = mon_data.Intensity
            axis = mon_data.xaxis
            data_sets.append({"name": component_name, "I": intensity, "axis": axis})

        if y_tick_positions is None:
            y_positions = np.linspace(1, len(data_sets), len(data_sets))
            y_sep = y_positions[1] - y_positions[0]
            y_positions = np.append(y_positions, y_positions[-1] + y_sep)
        else:
            #y_tick_positions.reverse()
            y_positions = y_tick_positions

        # Find min and max for axis
        for index, data_set in enumerate(data_sets):
            if index == 0:
                max_axis = max(data_set["axis"])
                min_axis = min(data_set["axis"])
            else:
                max_axis = max(max(data_set["axis"]), max_axis)
                min_axis = min(min(data_set["axis"]), min_axis)

        # New axis from min to max
        n_bins = 300
        axis = np.linspace(min_axis, max_axis, n_bins)
        sep = axis[1] - axis[0]
        bin_axis = np.append(axis - 0.5 * sep, axis[-1] + sep)
        intensities = np.zeros((len(data_sets), len(axis)))

        for index, data_set in enumerate(data_sets):
            new_bins = np.digitize(data_set["axis"], bin_axis)
            boarder_bins = np.where(new_bins == n_bins)
            new_bins[boarder_bins] -= 1
            intensities[index, new_bins] += data_set["I"]

        if ax is None:
            fig, ax = plt.subplots(1, 1, figsize=figsize)

        component_names = [x.name for x in self.original_instr.make_component_subset()]
        component_names.reverse()
        if not show_comp_names:
            component_names = [""] * len(component_names)

        metadata = mon_data.metadata
        metadata.dimension = [len(axis), len(y_positions) - 1]
        metadata.limits = [0, 0, 0, 0]
        metadata.limits[0] = min(axis)
        metadata.limits[1] = max(axis)
        metadata.limits[2] = min(y_positions)
        metadata.limits[3] = max(y_positions)

        display_data = np.flip(intensities, 0)
        data = McStasDataBinned(metadata, display_data, np.zeros((1, 1)), np.zeros((1, 1)))

        data.set_plot_options(show_colorbar=False, log=True, orders_of_mag=5)
        data.set_ylabel("")

        _plot_fig_ax(data, fig, ax)

        ax.set_yticks(y_positions)
        ax.set_yticklabels(component_names, fontsize=18)
        ax.set_xlabel(mon_data.metadata.xlabel, fontsize=18)

    def plot_0D(self, figsize=None, ax=None, fig=None, show_comp_names=True,
                y_tick_positions=None, ylimits=None):

        if figsize is None:
            figsize = (8, len(self.component_list)/5 + 1)

        intensities = []
        ray_counts = []
        component_names = []
        indicies = []

        index = 0
        for I_monitor_name, component_name in self.monitors:
            mon_data = name_search(I_monitor_name, self.data)
            values = mon_data.metadata.info["values"].split()
            # values contain strings of: Intensity, Error, Ncount
            intensities.append(float(values[0]))
            ray_counts.append(float(values[2]))
            component_names.append(component_name)
            indicies.append(index)
            index += 1

        # Extend with the last one
        intensities.append(intensities[-1])
        ray_counts.append(ray_counts[-1])
        indicies.append(index)
        component_names = [self.component_list[0].name] + component_names

        if not show_comp_names:
            component_names = [""] * len(component_names)

        if ax is None:
            fig, ax = plt.subplots(1, 1, figsize=figsize)

        intensities.reverse()
        ray_counts.reverse()
        component_names.reverse()

        if y_tick_positions is None:
            y_positions = indicies
        else:
            y_tick_positions.reverse()
            y_positions = y_tick_positions

        # Ensure x scale for intensity and n count share same tick marks
        I_limits, N_limits = common_range_limits(intensities, ray_counts)

        ax.step(intensities, y_positions, where="post", color="k", zorder=3.5)
        ax.set_yticks(y_positions)
        ax.set_yticklabels(component_names, fontsize=18)
        ax.set_xlabel("Intensity [n/s]", fontsize=18, color="k")
        ax.set_xscale("log", nonpositive='clip')
        ax.xaxis.set_tick_params(labelsize=16)
        ax.set_xlim(I_limits)

        if ylimits is None:
            ax.set_ylim([-0.5, index + 0.5])
        else:
            ax.set_ylim(ylimits)

        ax.grid(True)

        ax2 = ax.twiny()
        ax2.step(ray_counts, y_positions, where="post", color="g", linestyle="--", zorder=3.6)
        ax2.set_xlabel("Ray count", fontsize=18, color="g")
        ax2.set_xscale("log", nonpositive='clip')
        ax2.xaxis.set_tick_params(labelsize=16, colors="g")
        ax2.set_xlim(N_limits)

def common_range_limits(data_I, data_N):
    # Convert to numpy
    data_I = np.array(data_I)
    data_I_nonzero = data_I[np.nonzero(data_I)]
    data_N = np.array(data_N)
    data_N_nonzero = data_N[np.nonzero(data_N)]

    max_I = max(data_I_nonzero)
    min_I = min(data_I_nonzero)
    I_orders_of_mag = np.log10(max_I) - np.log10(min_I)

    max_N = max(data_N_nonzero)
    min_N = min(data_N_nonzero)
    N_orders_of_mag = np.log10(max_N) - np.log10(min_N)

    I_is_largest = I_orders_of_mag > N_orders_of_mag

    if I_is_largest:
        # Use intensity scale
        max_large = max_I
        min_large = min_I
        max_small = max_N
    else:
        max_large = max_N
        min_large = min_N
        max_small = max_I

    log_extra = 0.1  # Extra scale to avoid having data just at the edge

    # Round I scale up
    log_large_scale_max = np.ceil(np.log10(max_large)) + log_extra
    log_large_scale_min = np.floor(np.log10(min_large))
    large_limits = [10 ** log_large_scale_min, 10 ** log_large_scale_max]

    # Find how many orders of mag this cover
    large_orders_of_mag = log_large_scale_max - log_large_scale_min

    # Apply same to ray count
    log_small_scale_max = np.ceil(np.log10(max_small)) + log_extra
    log_small_scale_min = log_small_scale_max - large_orders_of_mag
    small_limits = [10 ** log_small_scale_min, 10 ** log_small_scale_max]

    if I_is_largest:
        I_limits = large_limits
        N_limits = small_limits
    else:
        I_limits = small_limits
        N_limits = large_limits

    return I_limits, N_limits