
McStasScript developer reference

Mads Bertelsen

October 20, 2020

1 Introduction

This document serves as developer documentation for the McStasScript API for python, there is
separate user documentation that covers installation and use. The purpose of McStasScript is to
generate McStas instrument files from python which is simply another way of writing an instrument
file. The main advantages are the possibility of using control structures like for-loops and that it
can be used directly from a python terminal or Jupyter notebook. The instrument simulation can be
executed from the scripting language and the data can be manipulated before plotting. It is possible
to convert existing McStas instruments to a python version using an included converter. The code is
open source and on Github: https://github.com/PaNOSC-ViNYL/McStasScript.

2 Dependencies

McStasScript requires python 3.0 or newer and the following packages: numpy, matplotlib, PyYAML.
A local installation of McStas is required, and McStasScript needs to be configured to find the

components and mcrun executable. The configuration only has to be done once, and is explained
further in the user documentation.

3 Platforms

McStasScript uses the python module subprocess to perform McStas simulations through a system
call. McStasScript has been tested on Mac OS X and Windows.

4 Distribution

The package is on PyPi and is manually updated. The package is owned by the user mbertelsen. The
setup.py file is included in the Github repository. New versions are uploaded using these commands:

1 python3 setup . py s d i s t bd i s t whee l
2 python3 −m twine upload d i s t /∗

The package is installed through pip with the following command:

1 python3 −m pip i n s t a l l McStasScript −−upgrade

1

https://github.com/PaNOSC-ViNYL/McStasScript

5 Class diagram

The class diagram of the software is shown in figure 1. The package relies on a large interface class
called McStas instr that attempts to facilitate everything a user would normally do with a McStas
instrument file. This section provides a small overview of the classes and how they fit together.

5.1 mcstas objects
The parameter variable and declare variable classes describe a simple instrument parameter and de-
clare variable respectively. They both keep the type of the variable, the name and similar. The
component class describes a component without any component parameters, which is used as a parent
for dynamically created component classes.

5.2 instr
The main interface class is called McStas instr and describes an instrument file, including the meth-
ods to perform the corresponding simulation. It includes lists of instances for parameter variable,
declare variable and the dynamically generated components. This class also writes the overall instru-
ment file to disk using the methods of the mcstas object classes.

5.3 data
Data from McStas simulations is loaded into a container class called McStasData, which consists of
the actual data arrays and instances of McStasMetaData / McStasPlotOptions. The McStasMetaData
class contains metadata such as information on axis, units and similar, while McStasPlotOptions
contain preferences on how this data should be plotted. One instance of McStasData holds one 1D or
2D dataset.

5.4 plotter
The plotter classes takes McStasData instances and plots the contents using the preferences from
McStasPlotOptions included therein. The make sub plot is most commonly used, as it shows an array
of McstasData in one figure. make plot can also handle arrays, but will make a figure for each dataset.
The make animation class can create an animation from an array of McStasData and save as a gif.

5.5 component reader
The ComponentReader class handles reading McStas component files from the local McStas installa-
tion, gathering information about their input parameters, units and similar. This information is stored
in a ComponentInfo instance. McStas instr creates the dynamic component classes from component
and an instance of ComponentInfo. Each dynamic class is only created once, and kept in a dictionary
to avoid duplication.

5.6 managed mcrun
The ManagedMcrun class handles executing McStas simulations and loading the resulting data into
McStasData objects.

5.7 instr reader
These classes are responsible for reading existing McStas instrument files, and translating these into
either McStas instr instances or writing a python file that when executed produces this McStas instr
object. This helps migrate projects to McStasScript from traditional instrument files, but the feature
is still not in a finished state. The interface is through the reader class.

2

McStas_instr

name
parameter_list
declare_list
component_list
component_name_list
component_class_lib
trace_section
initialize_section
finally_section
component_reader

__init__
add_parameter
add_declare_var
add_component
_create_component_instance
_handle_parameters
copy_component
get_component
get_last_component
append_declare
append_initialize
append_initialize_no_new_line
append_trace
append_trace_no_new_line
append_finally
append_finally_no_new_line
set_component_AT
set_component_ROTATED
set_component_RELATIVE
set_component_WHEN
append_component_EXTEND
set_component_JUMP
set_component_GROUP
set_component_SPLIT
set_component_parameter
set_component_comment
set_component_c_code_before
set_component_c_code_after
coordinates_to_string
show_components
show_instrument
show_parameters
component_help
print_components
print_component
print_component_short
write_c_files
write_full_instrument
run_full_instrument

ComponentReader

component_category
component_path

__init__
read_name
read_component_file
show_categories
show_components_in_category
line_starts_with
correct_for_brackets
_find_components
load_all_components

parameter_variable

type
name
value
comment

__init__
write_parameter

declare_variable

type
name
value
vector
comment

__init__
write_line

component

__isfrozen
name
component_name
AT_data
AT_relative
ROTATED_specified
ROTATED_data
ROTATED_relative
WHEN
EXTEND
GROUP
JUMP
SPLIT
comment
c_code_before
c_code_after

__init__
set_keyword_input
__setattr__
_freeze
_unfreeze
set_AT
set_ROTATED
set_RELATIVE
set_parameters
set_WHEN
set_GROUP
set_JUMP
set_SPLIT
append_EXTEND
set_comment
set_c_code_before
set_c_code_after
write_component
print_long
print_short
show_parameters
show_parameters_simple

ManagedMcrun

name_of_instrumentfile
data_folder_name
ncount
mpi
parameters
custom_flags
mcrun_path
increment_folder_name
compile

__init__
run_simulation
load_results

ComponentInfo

name
category
parameter_names
parameter_defaults
parameter_types
parameter_comments
parameter_units

__init__

McStasMetaData

info
dimension
component_name
filename
limits
xlabel
ylabel
title

__init__
add_info
extract_info
set_title
set_xlabel
set_ylabel

McStasPlotOptions

left_lim
right_lim
top_lim
bottom_lim
x_limit_multiplier
y_limit_multiplier
cut_max
cut_min
custom_xlim_left
custom_xlim_right
custom_ylim_top
custom_ylim_bottom
colormap
show_colorbar
log
orders_of_mag

__init__
set_options

McStasData

name
xaxis
Intensity
Ncount
Error
metadata
plot_options

__init__
set_plot_options
set_title
set_xlabel
set_ylabel

Configurator

configuration_file_name

__init__
_write_yaml
_read_yaml
_create_new_config_file
set_mcstas_path
set_mcrun_path
set_line_length

make_plot

__init__

make_sub_plot

__init__
fmt

make_animation

__init__
fmt
init_1D
animate_1D
init_2D
animate_2D

McStas_file

Reader

__init__
write_python_file
add_to_instr

InstrumentReader

product_filename
Initialize_reader
file_length
Declare_reader
filename
line_index
Trace_reader
Finally_reader
Instr
Definition_reader
write_file
file_data
instr_name

__init__
add_to_instr
generate_py_version
update_file_name
_return_line
_read_file
_get_next_line
_open_file

DefinitionReader

instr_name

__init__
read_definition_line
_start_py_file

TraceReader

stored_include
SPLIT
current_component
component_copy_target
EXTEND_mode
in_component_mode

__init__
sanitize_line
read_trace_line
_write_component_to_py

InitializeReader

__init__
read_initialize_line

DeclareReader

bracket_counter
in_declare_function
in_struct_definition

__init__
read_declare_line
_write_declare_line
_read_declare_statement

SectionReader

product_filename
return_line
Instr
write_file
get_next_line
instr_name

__init__
set_instr_name
_split_func
_split_func_brack
_in_func
_in_func_brack
_kw_to_string
_write_to_file

FinallyReader

__init__
read_finally_line

dynamic component

comp_param_1
comp_param_2
comp_param_3
comp_param_4
…

dummy

instrmcstas_objects plotter

data

managed_mcrun

component_reader

instr_reader

functions

reader

Figure 1: Map of classes in McStasScript and their relationships. The boxes indicate the file or folder
that includes the class definition. Black filled arrows shows aggregation, gray filled arrows shows
inheritance and dashed line shows dependency. The McStas logo shows where McStasScript depends
on McStas. The dynamic component classes are generated at run time based on user demand. The
user interface is through the classes marked with a star.

3

6 Documentation

The main documentation is provided as a pdf file, but the code is also heavily commented with doc
strings. The focus is on doc strings for interface classes, but internal classes are documented in the
same style. The following is an example of the declare variable class:

1 | d e c l a r e v a r i a b l e (∗ args , ∗∗kwargs)
2 |
3 | Class d e s c r i b i n g a dec l a r ed va r i ab l e in McStas instrument
4 |
5 | McStas parameters are dec l a r ed in de c l a r e s e c t i o n with c syntax .
6 | This c l a s s i s i n i t i a l i z e d with type , name . Using keyword
7 | arguments , the va r i ab l e can become an array and have i t s i n i t i a l
8 | value s e t .
9 |

10 | Att r ibute s
11 | −−−−−−−−−−
12 | type : s t r
13 | McStas type to de c l a r e : Double , Int , S t r ing
14 |
15 | name : s t r
16 | Name o f v a r i a b l e
17 |
18 | value : any
19 | I n i t i a l va lue o f va r i ab l e , converted to s t r i n g
20 |
21 | comment : s t r
22 | Comment d i sp layed next to the dec l a ra t i on , could conta in un i t s
23 |
24 | vec to r : i n t
25 | 0 i f a s i n g l e va lue i s given , o r the rw i s e conta in s the l ength
26 |
27 | Methods
28 | −−−−−−−
29 | w r i t e l i n e (f o)
30 | Writes a l i n e to text f i l e f o d e c l a r i n g the parameter in c

7 The two use modes of components

The software has two main ways of interacting with the dynamically generated component objects.
One way hides the object oriented nature, while the other exposes it. This may be confusing for users,
and a decision needs to be taken about keeping both or just one.

7.1 Through returned objects

It is possible to interact with the components through the objects returned by McStas instr.add component.

1 source = ODIN. add component (” source ” , ” Source s imple ”)
2 source . xwidth = 0 .1
3 source . yhe ight = 0 .1
4 source . set AT ([0 , 0 , 0] , RELATIVE=”Orig in ”)
5 source . set GROUP(” sour ce s ”)

Since the dynamic component objects have attributes corresponding to the parameter names, the
parameter names can be auto-completed in many editors. The name of the object can be different
from the McStas component instances, this may be confusing to some.

4

7.2 Through McStas instr

It is also possible to interact with these objects through the McStas instr.set component * methods.

1 ODIN. add component (” source ” , ” Source s imple ”)
2 ODIN. set component parameter (” source ” , {”xwidth” : 0 . 1 , ” yhe ight ” : 0 . 1})
3 ODIN. set component AT (” source ” , [0 , 0 , 0])
4 ODIN. set component GROUP(” source ” , ” sou rc e s ”)

The interface through the McStas instr does not require much knowledge of objects, but is a bit more
prone to error. The parameters can only be set through a dictionary, this is also possible in the object
version.

8 Testing

The majority of functionality contained in McStasScript is tested through unit tests or integration
tests. The coverage of classes can be seen in table 1. A notable exception in test coverage is the
plotting functionality. Simple integration tests are also available to test that McStas components can
be loaded, a simulation can be performed and that data can be loaded. The integration tests requires
the configuration to be performed and a local McStas installation.

interface
instr.py McStas instr
plotter.py make plot make sub plot make animation
functions.py name search name plot options Configurator load data
reader.py McStas file

data
data.py McStasData McStasMetaData McStasPlotOptions

helper
mcstas objects.py parameter variable declare variable component
component reader.py ComponentInfo ComponentReader
managed mcrun.py ManagedMcrun
formatting.py bcolors is legal parameter is legal filename

instr reader
control.py InstrumentReader
read definition.py DefinitionReader
read declare.py DeclareReader
read initalize.py InitializeReader
read trace.py TraceReader
read finally.py FinallyReader
util.py SectionReader

Table 1: Files, classes and functions contained in McStasScript. The left side shows the folders and files
included. The right side shows classes (normal font) and functions (itallics). Bold functions/classes
have unit tests, while the remaining do not.

The unit tests are found in the mcstasscript/test folder while the integration tests are in mcstass-
cript/integration tests. They are executed on Travis when uploaded to github, and can be executed
manually by navigating to the folder in a terminal and running:

1 python −m un i t t e s t

5

	Introduction
	Dependencies
	Platforms
	Distribution
	Class diagram
	mcstas_objects
	instr
	data
	plotter
	component_reader
	managed_mcrun
	instr_reader

	Documentation
	The two use modes of components
	Through returned objects
	Through McStas_instr

	Testing

