File: data.py

package info (click to toggle)
python-mcstasscript 0.0.46%2Bgit20250402111921.bfa5a26-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,440 kB
  • sloc: python: 13,421; makefile: 14
file content (1029 lines) | stat: -rw-r--r-- 34,158 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
import matplotlib.pyplot
import numpy as np
import copy
import re


class McStasMetaData:
    """
    Class for holding metadata for McStas dataset, is to be read from
    mccode.sim file.

    Attributes
    ----------
    info : dict
        Contains read strings from mccode.sim in key, value

    dimension : Int or List of Int
        Int for 1d data set with lenght of data, Array for 2d with each
        length

    component_name : str
        Name of component in McStas file

    filename : str
        Name of data file to read

    limits : List
        Limits for monitor, length=2 for 1d data and length=4 for 2d
        data, for example spatial or time limits for monitor

    title : str
        Title of monitor when plotting, placed above plot

    xlabel : str
        Text for xlabel when plotting

    ylabel : str
        Text for ylabel when plotting

    Methods
    -------
    add_info(key,value)
        Adds an element to the info dictionary

    extract_info()
        Unpacks the information in info to class attributes

    set_title(string)
        Overwrites current title

    set_xlabel(string)
        Overwrites current xlabel

    set_ylabel(string)
        Overwrites current ylabel
    """

    def __init__(self):
        """Creating a new instance, no parameters"""
        self.info = {}

        self.component_name = None
        self.parameters = None
        self.filename = None
        self.dimension = None
        self.limits = []

        self.xlabel = None
        self.ylabel = None
        self.zlabel = None
        self.title = None

        self.total_I = None
        self.total_E = None
        self.total_N = None

    def add_info(self, key, value):
        """Adding information to info dict"""
        self.info[key] = value

    def extract_info(self):
        """Extracting information from info dict to class attributes"""

        # Extract dimension
        if "type" in self.info:
            type_data = self.info["type"]
            if "array_0d" in type_data:
                self.dimension = 0
            if "array_1d" in type_data:
                type_data = type_data.split("(")[1]
                type_data = type_data.split(")")[0]
                self.dimension = int(type_data)
            if "array_2d" in type_data:
                self.dimension = []
                type_string1 = type_data.split(",")[0]
                type_string1 = type_string1.split("(")[1]
                self.dimension.append(int(type_string1))

                type_string2 = type_data.split(",")[1]
                type_string2 = type_string2.split(")")[0]
                self.dimension.append(int(type_string2))
        else:
            raise NameError("No type in mccode data section!")

        # Extract component name
        if "component" in self.info:
            self.component_name = self.info["component"].rstrip()

        if "Parameters" in self.info:
            self.parameters = self.info["Parameters"]

        # Extract filename
        if "filename" in self.info:
            self.filename = self.info["filename"].rstrip()
        else:
            # Monitors without output files do exist
            print("The component named \"" + self.component_name
                  + "\" had no data file and will not be loaded.")
            self.filename = ""

        # Extract limits
        self.limits = []
        if "xylimits" in self.info:
            # find the four numbers xmin, xmax, ymin, ymax
            temp_str = self.info["xylimits"]
            limits_string = temp_str.split()
            for limit in limits_string:
                self.limits.append(float(limit))

        if "xlimits" in self.info:
            # find the two numbers, xmin, xmax
            temp_str = self.info["xlimits"]
            limits_string = temp_str.split()
            for limit in limits_string:
                self.limits.append(float(limit))

        # Extract plotting labels and title
        if "xlabel" in self.info:
            self.xlabel = self.info["xlabel"].rstrip()
        if "ylabel" in self.info:
            self.ylabel = self.info["ylabel"].rstrip()
        if "zlabel" in self.info:
            self.zlabel = self.info["zlabel"].rstrip()
        if "title" in self.info:
            self.title = self.info["title"].rstrip()

        if "values" in self.info:
            value_list = self.info["values"]
            value_list = value_list.strip().split(" ")
            self.total_I = float(value_list[0])
            self.total_E = float(value_list[1])
            self.total_N = float(value_list[2])

    def set_title(self, string):
        """Sets title for plotting"""
        self.title = string

    def set_xlabel(self, string):
        """Sets xlabel for plotting"""
        self.xlabel = string

    def set_ylabel(self, string):
        """Sets ylabel for plotting"""
        self.ylabel = string

    def set_zlabel(self, string):
        """Sets zlabel for plotting"""
        self.zlabel = string

    def __repr__(self):
        string = "metadata object\n"
        if self.component_name is not None:
            string += "component_name: " + self.component_name + "\n"

        if self.filename is not None:
            string += "filename: " + str(self.filename) + "\n"

        if self.dimension is not None:
            if type(self.dimension) == int and self.dimension == 0:
                string += "0D data"
                if self.xlabel is not None:
                    string += " " + self.xlabel + "\n"
                if self.ylabel is not None:
                    string += " " + self.ylabel + "\n"
                if self.zlabel is not None:
                    string += " " + self.zlabel + "\n"

            elif type(self.dimension) == int and self.dimension != 0:
                string += "1D data of length " + str(self.dimension) + "\n"
                if self.limits is not None:
                    string += "  [" + str(self.limits[0]) + ": "
                    string += str(self.limits[1]) + "]"
                if self.xlabel is not None:
                    string += " " + self.xlabel + "\n"
                if self.ylabel is not None:
                    string += " " + self.ylabel + "\n"
                if self.zlabel is not None:
                    string += " " + self.zlabel + "\n"

            elif len(self.dimension) == 2:
                string += "2D data of dimension (" + str(self.dimension[0])
                string += ", " + str(self.dimension[1]) + ")\n"
                if self.xlabel is not None:
                    if self.limits is not None:
                        string += "  [" + str(self.limits[0]) + ": "
                        string += str(self.limits[1]) + "]"
                    string += " " + self.xlabel + "\n"

                if self.ylabel is not None:
                    if self.limits is not None and len(self.limits) == 4:
                        string += "  [" + str(self.limits[2]) + ": "
                        string += str(self.limits[3]) + "]"
                    string += " " + self.ylabel + "\n"

                if self.zlabel is not None:
                    string += " " + self.zlabel + "\n"

        if self.parameters is not None and len(self.parameters)>0:
            string += "Instrument parameters: \n"
            for key in self.parameters:
                string += " " + str(key) + " = "
                string += str(self.parameters[key]) + "\n"

        return string


class McStasPlotOptions:
    """
    Class that holds plotting options related to McStas data set

    Attributes
    ----------
    log : bool, default False
        To plot on logarithmic or not, standard is linear

    orders_of_mag : float, default 300
        If plotting on log scale, restrict max range to orders_of_mag
        below maximum value

    colormap : string, default jet
        Chosen colormap for 2d data, should be available in matplotlib

    show_colorbar : bool, default True
        Selects if colorbar should be shown or not

    cut_max : float, default 1
        Factor multiplied onto maximum data value to set upper plot limit

    cut_min : float, default 0
        Removes given fraction of the plot range from the lower limit

    x_limit_multiplier : float, default 1
        Multiplies x axis limits with factor, useful for unit changes

    y_limit_multiplier : float, default 1
        Multiplies y axis limits with factor, useful for unit changes

    custom_ylim_bottom : bool, default False
        Indicates whether a manual lower limit for y axis has been set

    custom_ylim_top : bool, default False
        Indicates whether a manual upper limit for y axis has been set

    custom_xlim_left : bool, default False
        Indicates whether a manual lower limit for x axis has been set

    custom_xlim_right : bool, default False
        Indicates whether a manual upper limit for x axis has been set

    Methods
    -------
    set_options(keyword arguments)
        Can set the class attributes using keyword options

    """

    def __init__(self, *args, **kwargs):
        """Setting default values for plotting preferences"""
        self.log = False
        self.orders_of_mag = 300
        self.colormap = "jet"
        self.show_colorbar = True
        self.cut_max = 1
        self.cut_min = 0
        self.x_limit_multiplier = 1
        self.y_limit_multiplier = 1

        self.custom_ylim_bottom = False
        self.custom_ylim_top = False
        self.custom_xlim_left = False
        self.custom_xlim_right = False

        self.top_lim = None
        self.bottom_lim = None
        self.left_lim = None
        self.right_lim = None

    def set_options(self, **kwargs):
        """
        Set custom values for plotting preferences

        Keyword arguments
        -----------------

        log : bool, default False
            To plot on logarithmic or not, standard is linear

        orders_of_mag : float, default 300
            If plotting on log scale, restrict max range to orders_of_mag
            below maximum value

        colormap : string, default jet
            Chosen colormap for 2d data, should be available in matplotlib

        show_colorbar : bool, default True
            Selects if colorbar should be shown or not

        cut_max : float, default 1
            Factor multiplied onto maximum data value to set upper plot limit

        cut_min : float, default 0
            Removes given fraction of the plot range from the lower limit

        x_limit_multiplier : float, default 1
            Multiplies x axis limits with factor, useful for unit changes

        y_limit_multiplier : float, default 1
            Multiplies y axis limits with factor, useful for unit changes

        bottom_lim : float
            Set manual lower limit for y axis

        top_lim : float
            Set manual upper limit for y axis

        left_lim : float
            Set manual lower limit for x axis

        right_lim : float
            Set manual upper limit for x axis

        """
        if "log" in kwargs:
            self.log = bool(kwargs["log"])

        if "orders_of_mag" in kwargs:
            self.orders_of_mag = kwargs["orders_of_mag"]
            if not isinstance(self.orders_of_mag, (float, int)):
                raise ValueError("orders_of_mag must be a number, got: "
                                 + str(self.orders_of_mag))

        if "colormap" in kwargs:
            all_colormaps = matplotlib.pyplot.colormaps()
            self.colormap = kwargs["colormap"]
            if self.colormap not in all_colormaps:
                raise ValueError("Chosen colormap not available in "
                                 + "matplotlib, was: "
                                 + str(self.colormap))

        if "show_colorbar" in kwargs:
            self.show_colorbar = bool(kwargs["show_colorbar"])

        if "cut_max" in kwargs:
            self.cut_max = kwargs["cut_max"]
            if not isinstance(self.cut_max, (float, int)):
                raise ValueError("cut_max has to be a number, was given: "
                                 + str(self.cut_max))

        if "cut_min" in kwargs:
            self.cut_min = kwargs["cut_min"]
            if not isinstance(self.cut_min, (float, int)):
                raise ValueError("cut_min has to be a number, was given: "
                                 + str(self.cut_min))

        if "x_axis_multiplier" in kwargs:
            self.x_limit_multiplier = kwargs["x_axis_multiplier"]
            if not isinstance(self.x_limit_multiplier, (float, int)):
                raise ValueError("x_limit_multiplier has to be a number, was "
                                 + "given: " + str(self.x_limit_multiplier))

        if "y_axis_multiplier" in kwargs:
            self.y_limit_multiplier = kwargs["y_axis_multiplier"]
            if not isinstance(self.y_limit_multiplier, (float, int)):
                raise ValueError("y_limit_multiplier has to be a number, was "
                                 + "given: " + str(self.y_limit_multiplier))

        if "top_lim" in kwargs:
            self.top_lim = kwargs["top_lim"]
            self.custom_ylim_top = True
            if not isinstance(self.top_lim, (float, int)):
                raise ValueError("top_lim has to be a number, was "
                                 + "given: " + str(self.top_lim))

        if "bottom_lim" in kwargs:
            self.bottom_lim = kwargs["bottom_lim"]
            self.custom_ylim_bottom = True
            if not isinstance(self.bottom_lim, (float, int)):
                raise ValueError("bottom_lim has to be a number, was "
                                 + "given: " + str(self.bottom_lim))

        if "left_lim" in kwargs:
            self.left_lim = kwargs["left_lim"]
            self.custom_xlim_left = True
            if not isinstance(self.left_lim, (float, int)):
                raise ValueError("left_lim has to be a number, was "
                                 + "given: " + str(self.left_lim))

        if "right_lim" in kwargs:
            self.right_lim = kwargs["right_lim"]
            self.custom_xlim_right = True
            if not isinstance(self.right_lim, (float, int)):
                raise ValueError("right_lim has to be a number, was "
                                 + "given: " + str(self.right_lim))

    def __repr__(self):

        string = "plot_options"

        string += " log: " + str(self.log) + "\n"
        if self.log:
            string += " orders_of_mag: " + str(self.orders_of_mag) + "\n"

        string += " colormap: " + str(self.colormap) + "\n"
        string += " show_colorbar: " + str(self.show_colorbar) + "\n"
        string += " cut_min: " + str(self.cut_min) + "\n"
        string += " cut_max: " + str(self.cut_max) + "\n"
        string += " x_limit_multiplier: " + str(self.x_limit_multiplier) + "\n"
        string += " y_limit_multiplier: " + str(self.y_limit_multiplier) + "\n"

        if self.custom_xlim_left:
            string += "manual x lower limit: " + str(self.left_lim)

        if self.custom_xlim_right:
            string += "manual x upper limit: " + str(self.right_lim)

        if self.custom_ylim_bottom:
            string += "manual y lower limit: " + str(self.bottom_lim)

        if self.custom_ylim_bottom:
            string += "manual y upper limit: " + str(self.top_lim)

        return string


class McStasData:
    """
    Class for holding full McStas dataset with data, metadata and
    plotting preferences

    Attributes
    ----------
    metadata : McStasMetaData instance
        Holds the metadata for the dataset

    name : str
        Name of component, extracted from metadata

    plot_options : McStasPlotOptions instance
        Holds the plotting preferences for the dataset

    Methods
    -------
    set_xlabel : string
        sets xlabel of data for plotting

    set_ylabel : string
        sets ylabel of data for plotting

    set_title : string
        sets title of data for plotting

    set_options : keyword arguments
        sets plot options, keywords passed to McStasPlotOptions method
    """

    def __init__(self, metadata):
        """
        Initialize a new McStas dataset, 4 positional arguments, pass
        xaxis as kwarg if 1d data

        Parameters
        ----------
        metadata : McStasMetaData instance
            Holds the metadata for the dataset
        """

        # attach meta data
        self.metadata = metadata
        # get name from metadata
        self.name = self.metadata.component_name
        # initialize PlotOptions
        self.plot_options = McStasPlotOptions()

        self.data_type = None
        self.original_data_location = None

    # Methods xlabel, ylabel and title as they might not be found
    def set_xlabel(self, string):
        self.metadata.set_xlabel(string)

    def set_ylabel(self, string):
        self.metadata.set_ylabel(string)

    def set_zlabel(self, string):
        self.metadata.set_zlabel(string)

    def set_title(self, string):
        self.metadata.set_title(string)

    def set_plot_options(self, **kwargs):
        self.plot_options.set_options(**kwargs)

    def set_data_location(self, data_location):
        self.original_data_location = data_location

    def get_data_location(self):
        return self.original_data_location

    def __str__(self):
        """
        Returns string with quick summary of data
        """

        string = "McStasData: "
        string += self.name + " "
        if type(self.metadata.dimension) == int and self.metadata.dimension == 0:
            string += "type: 0D "
        elif type(self.metadata.dimension) == int and self.metadata.dimension != 0:
            string += "type: 1D "
        elif len(self.metadata.dimension) == 2:
            string += "type: 2D "
        else:
            string += "type: other "

        if self.metadata.total_I is not None:
            string += " I:" + str(self.metadata.total_I)
        if self.metadata.total_E is not None:
            string += " E:" + str(self.metadata.total_E)
        if self.metadata.total_N is not None:
            string += " N:" + str(self.metadata.total_N)

        return string

    def __repr__(self):
        return "\n" + self.__str__()


class McStasDataBinned(McStasData):
    """
    Class for holding full McStas dataset with data, metadata and
    plotting preferences

    Attributes
    ----------
    metadata : McStasMetaData instance
        Holds the metadata for the dataset

    name : str
        Name of component, extracted from metadata

    Intensity : numpy array
        Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in
        metadata

    Error : numpy array
        Error data [neutrons/s] in 1d or 2d numpy array, same dimensions as
        Intensity

    Ncount : numpy array
        Number of rays in bin, 1d or 2d numpy array, same dimensions as
        Intensity

    plot_options : McStasPlotOptions instance
        Holds the plotting preferences for the dataset

    Methods
    -------
    set_xlabel : string
        sets xlabel of data for plotting

    set_ylabel : string
        sets ylabel of data for plotting

    set_zlabel : string
        sets ylabel of data for plotting

    set_title : string
        sets title of data for plotting

    set_options : keyword arguments
        sets plot options, keywords passed to McStasPlotOptions method
    """

    def __init__(self, metadata, intensity, error, ncount, **kwargs):
        """
        Initialize a new McStas dataset, 4 positional arguments, pass
        xaxis as kwarg if 1d data

        Parameters
        ----------
        metadata : McStasMetaData instance
            Holds the metadata for the dataset

        intensity : numpy array
            Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in
            metadata

        error : numpy array
            Error data [neutrons/s] in 1d or 2d numpy array, same dimensions
            as Intensity

        ncount : numpy array
            Number of rays in bin, 1d or 2d numpy array, same dimensions as
            Intensity

        kwargs : keyword arguments
            xaxis is required for 1d data
        """

        super().__init__(metadata)

        # three basic arrays from positional arguments
        if not isinstance(intensity, np.ndarray):
            raise ValueError("intensity should be numpy array!")
        if not isinstance(error, np.ndarray):
            raise ValueError("error should be numpy array!")
        if not isinstance(ncount, np.ndarray):
            raise ValueError("ncount should be numpy array!")

        self.Intensity = intensity
        self.Error = error
        self.Ncount = ncount

        if type(self.metadata.dimension) == int and self.metadata.dimension == 0:
            self.data_type = "Binned 0D"
        elif type(self.metadata.dimension) == int and self.metadata.dimension != 0:
            self.data_type = "Binned 1D"
            if "xaxis" in kwargs:
                self.xaxis = kwargs["xaxis"]
            else:
                raise NameError(
                    "ERROR: Initialization of McStasData done with 1d "
                    + "data, but without xaxis for " + self.name + "!")
        elif len(self.metadata.dimension) == 2:
            self.data_type = "Binned 2D"
        else:
            self.data_type = "Binned"


class McStasDataEvent(McStasData):
    """
    Class for holding McStas event dataset with data, metadata and
    plotting preferences. Usually data the first one million events
    is plotted.

    Attributes
    ----------
    metadata : McStasMetaData instance
        Holds the metadata for the dataset

    name : str
        Name of component, extracted from metadata

    Events : numpy array
        Event data

    plot_options : McStasPlotOptions instance
        Holds the plotting preferences for the dataset

    Methods
    -------
    set_xlabel : string
        sets xlabel of data for plotting

    set_ylabel : string
        sets ylabel of data for plotting

    set_zlabel : string
        sets zlabel of data for plotting

    set_title : string
        sets title of data for plotting

    set_options : keyword arguments
        sets plot options, keywords passed to McStasPlotOptions method
    """

    def __init__(self, metadata, events, **kwargs):
        """
        Initialize a new McStas event dataset, 2 positional arguments

        Parameters
        ----------
        metadata : McStasMetaData instance
            Holds the metadata for the dataset

        events : numpy array
            event data
        """

        super().__init__(metadata)

        # three basic arrays from positional arguments
        if not isinstance(events, np.ndarray):
            raise ValueError("events should be numpy array!")

        self.Events = events
        self.data_type = "Events"

        self.variables = self.metadata.info["variables"].strip()
        self.variables = self.variables.split()

        # Calculate I, E and N
        if "p" in self.variables:
            p_array = self.get_data_column("p")
            total_I = p_array.sum()
            total_E = np.sqrt((p_array ** 2).sum())
            total_N = len(p_array)

            self.metadata.total_I = total_I
            self.metadata.total_E = total_E
            self.metadata.total_N = total_N

        else:

            self.metadata.total_I = None
            self.metadata.total_E = None
            self.metadata.total_N = None

        self.labels = {"t": "t [s]",
                       "x": "x [m]",
                       "y": "y [m]",
                       "z": "z [m]",
                       "vx": "vx [m/s]",
                       "vy": "vy [m/s]",
                       "vz": "vz [m/s]",
                       "l": "wavelength [AA]",
                       "e": "energy [meV]",
                       "speed": "speed [m/s]",
                       "dx": "divergence x [deg]",
                       "dy": "divergence y [deg]"}

    def find_variable_index(self, axis, flag_info=None):
        """
        Returns variable index for given axis name

        Parameters:

        axis : str
            Name of desired axis

        flag_info: list
            List of flag names used for user variables in event data
        """
        if flag_info is not None:
            # If flag info given, use it to find user var string
            for index, flag in enumerate(flag_info):
                if axis == flag:
                    axis = f"U{index + 1}"

        return self.variables.index(axis)

    def scale_weights(self, factor):
        """
        Scales all event weights with given factor

        Parameters:

        factor : float
            Factor with which all weights are scaled
        """
        self.Events[:, self.find_variable_index("p")] *= factor

    def get_label(self, axis, flag_info=None):
        """
        Returns data label corresponding to given axis name

        Parameters:

        axis : str
            Name of parameter

        flag_info : list
            list of names for user variables in event data set
        """
        axis = axis.lower()

        if flag_info is not None:
            # If flag info given, use it to find user var string
            for index, flag in enumerate(flag_info):
                if axis == flag:
                    return f"User{index+1}: {flag}"

        if axis in self.labels:
            return self.labels[axis]
        else:
            return ""

    def get_data_column(self, axis, flag_info=None):
        """
        Returns data column corresponding to given axis name

        Parameters:

        axis : str
            Name of parameter

        flag_info : list
            list of names for user variables in event data set
        """

        m_n_const = 1.674927e-27
        h_const = 6.626068e-34

        if axis.lower() == "speed":
            # Convert velocity to speed (must be before l and e)
            vx = self.Events[:, self.find_variable_index("vx")]
            vy = self.Events[:, self.find_variable_index("vy")]
            vz = self.Events[:, self.find_variable_index("vz")]
            return np.sqrt(vx ** 2 + vy ** 2 + vz ** 2)

        elif axis.lower() == "l":
            # Convert speed to lambda
            speed = self.get_data_column("speed")
            lambda_meter = h_const / (m_n_const*speed)
            return lambda_meter*1E10

        elif axis.lower() == "e":
            # Convert speed to energy
            speed = self.get_data_column("speed")
            energy_joule = 0.5 * m_n_const * speed ** 2
            return energy_joule/1.60217663E-19*1E3

        elif axis.lower() == "dx":
            # Convert velocity to divergence x
            vx = self.Events[:, self.find_variable_index("vx")]
            vz = self.Events[:, self.find_variable_index("vz")]
            return np.arctan(vx/vz) * 180 / np.pi

        elif axis.lower() == "dy":
            # Convert velocity to divergence y
            vy = self.Events[:, self.find_variable_index("vy")]
            vz = self.Events[:, self.find_variable_index("vz")]
            return np.arctan(vy/vz) * 180 / np.pi

        else:
            index = self.find_variable_index(axis, flag_info=flag_info)
            return self.Events[:, index]

    def make_1d(self, axis1, n_bins=50, flag_info=None):
        """
        Bin event data along to given axis to create binned dataset

        Parameters:

        axis1 : str
            Name of parameter for binned axis

        n_bins : integer
            Number of bins for histogramming

        flag_info : list
            list of names for user variables in event data set
        """
        data = self.get_data_column(axis1, flag_info)
        label = self.get_label(axis1, flag_info)

        weights = self.get_data_column("p", flag_info)
        intensity, edges = np.histogram(data, bins=n_bins, weights=weights)
        error_squared, edges = np.histogram(data, bins=n_bins, weights=weights**2)
        error = np.sqrt(error_squared)
        ncount, edges = np.histogram(data, bins=n_bins)

        centers = edges[0:-1] + 0.5*(edges[1] - edges[0])

        metadata = copy.deepcopy(self.metadata)
        metadata.dimension = len(centers)
        metadata.info["type"] = "array_1d"
        metadata.limits = [centers[0], centers[-1]]

        total_I = np.sum(intensity)
        total_E = np.sqrt(error_squared.sum())
        total_N = np.sum(ncount)
        metadata.info["values"] = "{:2.6E} {:2.6E} {:2.6E}".format(total_I, total_E, total_N)
        metadata.total_I = total_I
        metadata.total_E = total_E
        metadata.total_N = total_N

        binned = McStasDataBinned(metadata, intensity=intensity,
                                  error=error, ncount=ncount, xaxis=centers)

        binned.set_title("Binned data generated from events")
        binned.set_xlabel(label)
        binned.set_ylabel("Intensity per bin [n/s]")

        return binned

    def make_2d(self, axis1, axis2, n_bins=100, flag_info=None):
        """
        Bin event data along to given axes to create binned dataset

        Parameters:

        axis1 : str
            Name of parameter for first axis

        axis2 : str
            Name of parameter for second axis

        n_bins : integer or list
            Number of bins for histogramming, can be list with two elements

        flag_info : list
            list of names for user variables in event data set
        """

        data1 = self.get_data_column(axis1, flag_info)
        label1 = self.get_label(axis1, flag_info)
        data2 = self.get_data_column(axis2, flag_info)
        label2 = self.get_label(axis2, flag_info)

        if isinstance(n_bins, list):
            n_bins.reverse()

        weights = self.get_data_column("p", flag_info)
        intensity, edges2, edges1 = np.histogram2d(data2, data1, bins=n_bins, weights=weights)
        error_squared, edges2, edges1 = np.histogram2d(data2, data1, bins=n_bins, weights=weights**2)
        error = np.sqrt(error_squared)
        ncount, edges2, edges1 = np.histogram2d(data2, data1, bins=n_bins)

        centers1 = edges1[0:-1] + 0.5*(edges1[1] - edges1[0])
        centers2 = edges2[0:-1] + 0.5*(edges2[1] - edges2[0])

        metadata = copy.deepcopy(self.metadata)
        metadata.dimension = [len(centers1), len(centers2)]
        metadata.info["type"] = "array_2d"
        metadata.limits = [centers1[0], centers1[-1], centers2[0], centers2[-1]]

        total_I = intensity.sum()
        total_E = np.sqrt(error_squared.sum())
        total_N = ncount.sum()
        metadata.info["values"] = "{:2.6E} {:2.6E} {:2.6E}".format(total_I, total_E, total_N)
        metadata.total_I = total_I
        metadata.total_E = total_E
        metadata.total_N = total_N

        binned = McStasDataBinned(metadata, intensity=intensity,
                                  error=error, ncount=ncount)
        binned.set_title("Binned data generated from events")
        binned.set_xlabel(label1)
        binned.set_ylabel(label2)

        return binned

    def __str__(self):
        """
        Returns string with quick summary of data
        """

        string = "McStasDataEvent: "
        string += self.name + " with "
        string += str(len(self.Events)) + " events."
        if "variables" in self.metadata.info:
            string += " Variables: "
            string += self.metadata.info["variables"].strip()

        return string

    def __repr__(self):
        return "\n" + self.__str__()

def parse_coordinates(line, keyword):
    # Extract the coordinates from the line
    match = re.search(r'\(([^)]+)\)', line)
    if match:
        coords = match.group(1).split(',')
        coords = [float(coord.strip()) for coord in coords]
        return {f'{keyword}_x': coords[0], f'{keyword}_y': coords[1], f'{keyword}_z': coords[2]}
    return {}

class ComponentData:
    def __init__(self, file_path):
        self.file_path = file_path
        self.data = None

    def read(self):

        components = {}

        current_component = None

        with open(self.file_path, 'r') as file:
            for line in file:
                line = line.strip()
                if line.startswith('COMPONENT'):
                    match = re.match(r'COMPONENT (\S+) = (\S+)', line)
                    if match:
                        component_name = match.group(1)
                        component_type = match.group(2)
                        current_component = {'component': component_type}
                        components[component_name] = current_component
                        current_component["parameters"] = {}
                elif '=' in line:
                    if current_component is not None:
                        key, value = line.split('=',1)
                        try:
                            value = float(value)
                        except:
                            pass
                        current_component["parameters"][key] = value
                elif line.startswith('AT'):
                    if current_component is not None:
                        current_component.update(parse_coordinates(line, 'AT'))
                        if line.endswith('ABSOLUTE'):
                            current_component['AT_relative'] = "ABSOLUTE"
                        else:
                            current_component['AT_relative'] = line.split('RELATIVE')[1].strip()
                elif line.startswith('ROTATED'):
                    if current_component is not None:
                        current_component.update(parse_coordinates(line, 'ROTATED'))
                        if line.endswith('ABSOLUTE'):
                            current_component['ROTATED_relative'] = "ABSOLUTE"
                        else:
                            current_component['ROTATED_relative'] = line.split('RELATIVE')[1].strip()

        self.data = components

        return components