1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
|
import os
from datetime import datetime
import time
import json
TIME_FORMAT = "%d/%m/%Y %H:%M:%S" # Time format used for database
class BeamDumpDatabase:
def __init__(self, name, path):
"""
Database over location and run properties of beam dumps
name : str
Name of instrument for which this database is connected
path : str
input_path for instrument, database is placed there
"""
self.name = name
self.path = path
self.data = {}
self.database_path = os.path.join(self.path, self.name + "_db")
if os.path.isdir(self.database_path):
self.load_database(self.database_path)
else:
self.create_new_database(self.database_path)
def create_new_database(self, path):
"""
Creates directory for database, may be expanded in future
"""
os.mkdir(path)
def load_database(self, path):
"""
Loads an existing database from disk
path : str
Path for the database to be loaded
"""
dump_points = os.listdir(path)
# Each dump point is a folder in the database root
for dump_point in dump_points:
dump_point_path = os.path.join(path, dump_point)
if not os.path.isdir(dump_point_path):
continue
if dump_point not in self.data:
self.data[dump_point] = {}
# Each run is a json file in the dump_point folder
runs = os.listdir(dump_point_path)
for run in runs:
if run.endswith(".json"):
run_path = os.path.join(dump_point_path, run)
dump = BeamDump.dump_from_JSON(run_path)
run_name = dump.data["run_name"]
if run_name not in self.data[dump_point]:
self.data[dump_point][run_name] = {}
tag = dump.data["tag"]
self.data[dump_point][run_name][tag] = dump
def create_folder_for_dump_point(self, dump_point):
"""
Adds folder to database for dump_point if it hasn't been made yet
Returns path to the folder whether it was created here or existed
"""
dump_point_path = os.path.join(self.database_path, dump_point)
if not os.path.isdir(dump_point_path):
os.mkdir(dump_point_path)
return dump_point_path
def load_data(self, expected_filename, data_folder_path, parameters, run_name, dump_point, comment):
"""
Include MCPL file into database with given metadata
Attempts to load MCPL file from McStas output. If the file does not
exists, the method will return without adding anything to the database.
expected_filename : str
Filename given as McStas parameter, can include explicit double quotes
data_folder_path : str
Path to the data folder that contains the MCPL file
parameters: dict
dict with parameter names and values for this run
run_name : str
Specified run name for this run
dump_point : str
Name of component where MCPL cut ended, can start from here later
comment : str
Comment on the run that can be included in metadata
"""
if not os.path.isdir(data_folder_path):
# If the folder doesn't exist, skip search
return
# Sanitize expected_filename
expected_filename = expected_filename.strip('"')
expected_filename = os.path.split(expected_filename)[-1]
expected_filename = expected_filename.split(".gz")[0]
expected_filename = expected_filename.split(".mcpl")[0]
# The system might or might not be able to compress the data, search for both
possible_endings = [".mcpl", ".mcpl.gz"]
for ending in possible_endings:
file_path = os.path.join(data_folder_path, expected_filename + ending)
if not os.path.isfile(file_path):
continue
if dump_point not in self.data:
self.data[dump_point] = {}
if run_name not in self.data[dump_point]:
self.data[dump_point][run_name] = {}
n_tags = len(self.data[dump_point][run_name])
# Find relative path
db_path = self.path
rel_path = os.path.relpath(file_path, start=db_path)
# Create dump with given metadata
dump = BeamDump(data_path=rel_path, parameters=parameters,
dump_point=dump_point, run_name=run_name,
comment=comment, tag=n_tags)
# Write to disk
dump_path = self.create_folder_for_dump_point(dump_point)
dump.dump_to_JSON(dump_path)
self.data[dump_point][run_name][n_tags] = dump
return dump
def get_dump(self, point, run_name=None, tag=None):
"""
Getter for dumps with specified point, run_name and tag
"""
if point not in self.data:
raise KeyError("The dump point '" + point + "' wasn't in the database.")
if run_name is None and tag is None:
return self.newest_at_point(point)
if run_name not in self.data[point]:
raise KeyError("The run_name '" + run_name + "' wasn't in the database "
+ "at the dump_point '" + point + "'.")
if tag is None:
return self.newest_at_point(point, run=run_name)
tag = int(tag) # Ensure tag is an integer for database lookup
if tag not in self.data[point][run_name]:
raise KeyError("The tag '" + str(tag) + "' was not in the database for"
+ "run_name '" + run_name
+ "at the dump_point '" + point + "'.")
dump = self.data[point][run_name][tag]
if not dump.file_present(self.path):
raise RuntimeError("The dump datafile was not found in the expected location.")
return dump
def newest_at_point(self, point, run=None):
"""
Gets newest dump at a given point and optionally a run_name
point : str
String with component name matching the dump point
run : str
String matching the run_name desired
"""
if point not in self.data:
raise KeyError("The dump point '" + point + "' wasn't in the database.")
if run is None:
# Collect all runs at the point for sort_by_time
runs = self.data[point]
else:
# If a run name is specified, check it exists
if run not in self.data[point]:
raise KeyError("The run_name '" + run + "' wasn't in the database "
+ "at the dump_point '" + point + "'.")
# Collect all the runs in a dict for sort_by_time
runs = {run: self.data[point][run]}
return self.sort_by_time(runs, return_latest=True)
def sort_by_time(self, runs, return_latest=False):
"""
Sorts a given dict of runs and returns a list or the latest if return_latest is true
The input data is given as a dictionary of runs matching the database structure
with all the individual tags underneath the runs. It is usually used with all runs
being from the same point, but not necessary for the method to work.
runs : dict
Dictionary with runs containing dictionary of tags pointing to dumps
return_latest : bool
If True only latest dump is returned, otherwise sorted list
"""
time_to_run = {}
for run in runs:
for tag in runs[run]:
dump = runs[run][tag]
time_loaded = dump.data["time_loaded"]
time_to_run[time_loaded] = dump
sorted_times = sorted((time.strptime(d, TIME_FORMAT) for d in time_to_run.keys()), reverse=True)
return_list = []
for sorted_time in sorted_times:
return_list.append(time_to_run[time.strftime(TIME_FORMAT, sorted_time)])
if return_latest:
for dump in return_list:
if dump.file_present(self.path):
return dump
else:
point = dump.data["dump_point"]
run_name = dump.data["run_name"]
tag = dump.data["tag"]
data_path = dump.data["data_path"]
print(f"Latest file had run_name '{run_name}' and tag '{tag}', but the file was "
f"not found in the expected location, and thus skipped.")
print("Expected path: ", data_path)
raise RuntimeError("No beam dumps available.")
return return_list
def show_in_order(self, component_names):
"""
Method to print content of database in order of component_names
component_names : list
List of strings for component names in the instrument
"""
if len(self.data) == 0:
print("No data in dump database yet. Use run_to method to create dump.")
return
print("Run point:")
print(" ", "run_name".ljust(12), ":", "tag", ":", "time".ljust(20), ":", "comment")
print("-"*60, "--- -- -")
for name in component_names:
if name in self.data:
print(name + ":")
dumps = self.sort_by_time(self.data[name])
for dump in dumps:
if len(dump.data["parameters"]) < 2:
par_string = ": " + str(dump.data["parameters"])
else:
par_string = ""
print(" ", dump.data["run_name"].ljust(12), ":",
str(dump.data["tag"]).ljust(3), ":",
dump.data["time_loaded"].ljust(20), ":",
dump.data["comment"], par_string)
def __repr__(self):
"""
Basic repr of the data included in the database.
"""
string = ""
for point in self.data:
string += point + ":\n"
for run in self.data[point]:
for tag in self.data[point][run]:
string += " " + self.data[point][run][tag].data["run_name"] + "\n:"
string += " " + str(self.data[point][run][tag]) + ":\n"
return string
class BeamDump:
def __init__(self, data_path, parameters, dump_point, run_name,
time_loaded=None, comment="", tag=0, record_name=""):
"""
Class describing a beamdump made somewhere in an instrument
Inputs for class matches what can be read from json file describing
dump to facilitate easy recreation from file. Strips complex parameters
into simple dict with par name and value for easy storage.
data_path : str
Path of MCPL datafile
parameters : dict
Parameters used to run simulation
dump_point : str
Name of component where beam was dumped
run_name : str
Specified run name for this dump
time_loaded : str
Optional, usually generated at first load, timestamp
comment : str
Comment for this beamdump
tag : integer
Tag for this beamdump to differentiate similar dumps
record_name : str
Unique filename combining run_name and tag
"""
simple_parameters = {}
# Convert complex parameter objects to simple key - value pairs
for parameter in parameters:
if hasattr(parameters[parameter], "value"):
# The full parameter objects store their value in value attribute
simple_parameters[parameter] = parameters[parameter].value
else:
simple_parameters[parameter] = parameters[parameter]
# The fields in data must correspond to the input of the class
self.data = {"data_path": data_path,
"dump_point": dump_point,
"parameters": simple_parameters,
"run_name": run_name,
"comment": comment,
"tag": tag,
"record_name": record_name}
if time_loaded is None:
self.data["time_loaded"] = datetime.now().strftime(TIME_FORMAT)
else:
self.data["time_loaded"] = time_loaded
@classmethod
def dump_from_JSON(cls, filepath):
"""
Load dump from json file
filepath : str
Path to json file for load
"""
with open(filepath, "r") as f:
data = json.loads(f.read())
return cls(**data) # Since the data fields correspond to class input
def dump_to_JSON(self, folder_path):
"""
Writes representation of the object to file
folder_path : str
Folder in which the dump will be placed
"""
self.data["record_name"] = self.data["run_name"] + "_" + str(self.data["tag"])
filepath = os.path.join(folder_path, self.data["record_name"] + ".json")
if os.path.isfile(filepath):
raise RuntimeError("Run with this destination and run_name: '"
+ self.data["record_name"]
+ "' already exists in BeamDumpDatabase.")
with open(filepath, "w") as outfile:
json.dump(self.data, outfile)
def file_present(self, origin_path):
"""
Checks whether the file is present and returns bool
"""
return os.path.isfile(os.path.join(origin_path,self.data["data_path"]))
def print_all(self):
"""
Print all entries in data for dump
"""
for key in self.data:
print(key, ":", self.data[key])
def __repr__(self):
"""
Simple representation of data in object
"""
return str(self.data)
|