1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
|
import os
import numpy as np
import subprocess
import mmap
import warnings
import h5py
import re
from mcstasscript.helper.formatting import bcolors
from mcstasscript.data.data import McStasMetaData
from mcstasscript.data.data import McStasDataBinned
from mcstasscript.data.data import McStasDataEvent
class ManagedMcrun:
"""
A class for performing a mcstas simulation and organizing the data
into python objects
ManagedMcrun is usually called by the instrument class of
McStasScript but can be used independently. It runs the mcrun
command using the system command, and if this is not in the path,
the absolute path can be given in a keyword argument executable_path.
Attributes
----------
name_of_instrumentfile : str
Name of instrument file to be executed
data_folder_name : str
Name of datafolder mcrun writes to disk
ncount : int
Number of rays to simulate
mpi : int
Number of mpi threads to run
parameters : dict
Dictionary of parameter names and values for this simulation
custom_flags : string
Custom flags that are passed to the mcrun command
executable_path : string
Path to the mcrun command (can be empty if already in path)
Methods
-------
run_simulation()
Runs simulation, returns list of McStasData instances
"""
def __init__(self, instr_name, **kwargs):
"""
Performs call to McStas with given options
Uses subprocess to call mcrun / mxrun to perform simulation of given
instrument file.
Parameters
----------
instr_name : str
Name of instrument file to be simulated
kwargs : keyword arguments
output_path : str, required
Sets data_folder_name
ncount : int, default 1E6
Sets ncount
mpi : int, default None
Sets thread count, None to disable mpi
gravity : bool, default False
Enables gravity if True
parameters : dict
Sets parameters
custom_flags : str, default ""
Sets custom_flags passed to mcrun
executable_path : str
Path to mcrun command, "" if already in path
increment_folder_name : bool, default True
If True, automatically appends output_path to make it unique
force_compile : bool, default True
If True, forces compile. If False no new instrument is written
run_folder : str
Path to folder in which to run McStas
openacc : bool, default False
If True, adds the --openacc flag to mcrun call
NeXus : bool, default False
If True, adds the --format=NeXus to mcrun call
"""
self.name_of_instrumentfile = instr_name
self.data_folder_name = ""
self.ncount = int(1E6)
self.mpi = None
self.gravity = False
self.openacc = False
self.NeXus = False
self.parameters = {}
self.custom_flags = ""
self.executable_path = ""
self.executable = ""
self.increment_folder_name = True
self.compile = True
self.run_path = "."
self.seed = None
self.suppress_output = False
# executable_path always in kwargs
if "executable_path" in kwargs:
self.executable_path = kwargs["executable_path"]
if "executable" in kwargs:
self.executable = kwargs["executable"]
if "output_path" in kwargs:
self.data_folder_name = kwargs["output_path"]
else:
raise NameError(
"ManagedMcrun needs output_path to load data, add "
+ "with keyword argument.")
if "ncount" in kwargs:
self.ncount = int(kwargs["ncount"])
if self.ncount < 1:
raise ValueError("ncount should be a positive integer, was "
+ str(self.ncount))
if "mpi" in kwargs:
self.mpi = kwargs["mpi"]
try:
self.mpi = int(self.mpi)
except (TypeError, ValueError) as e:
if self.mpi is not None:
raise RuntimeError("MPI should be an integer, was "
+ str(self.mpi))
if self.mpi is not None:
if self.mpi < 1:
raise ValueError("MPI should be an integer larger than"
+ " 0, was " + str(self.mpi))
if "gravity" in kwargs:
self.gravity = kwargs["gravity"]
if "openacc" in kwargs:
self.openacc = kwargs["openacc"]
if "NeXus" in kwargs:
self.NeXus = kwargs["NeXus"]
if "seed" in kwargs:
self.seed = kwargs["seed"]
if "parameters" in kwargs:
self.parameters = kwargs["parameters"]
if not isinstance(self.parameters, dict):
raise RuntimeError("Parameters should be given as dict.")
if "custom_flags" in kwargs:
self.custom_flags = kwargs["custom_flags"]
if not isinstance(self.custom_flags, str):
raise RuntimeError("ManagedMcrun detected given customf_flags"
+ " was not a string.")
if "increment_folder_name" in kwargs:
self.increment_folder_name = kwargs["increment_folder_name"]
if "force_compile" in kwargs:
self.compile = kwargs["force_compile"]
if "run_path" in kwargs:
self.run_path = kwargs["run_path"]
if "suppress_output" in kwargs:
self.suppress_output = bool(kwargs["suppress_output"])
# get relevant paths and check their validity
current_directory = os.getcwd()
if not os.path.isabs(self.data_folder_name):
self.data_folder_name = os.path.join(current_directory,
self.data_folder_name)
else:
split_data_path = os.path.split(self.data_folder_name)
if not os.path.isdir(split_data_path[0]):
raise RuntimeError("Parent folder for datafolder invalid: "
+ str(split_data_path[0]))
if not os.path.isabs(self.run_path):
self.run_path = os.path.join(current_directory, self.run_path)
else:
split_run_path = os.path.split(self.run_path)
if not os.path.isdir(split_run_path[0]):
raise RuntimeError("Parent folder for run_path invalid: "
+ str(split_run_path[0]))
if not os.path.isdir(self.run_path):
raise RuntimeError("ManagedMcrun found run_path to "
+ "be invalid: " + str(self.run_path))
if not os.path.isdir(self.executable_path):
raise RuntimeError("ManagedMcrun found executable_path to "
+ "be invalid: " + str(self.executable_path))
def run_simulation(self):
"""
Runs McStas simulation described by initializing the object
"""
# construct command to run
option_string = ""
if self.compile:
option_string += "-c "
if self.gravity:
option_string += "-g "
if self.NeXus:
option_string += "--format=NeXus "
if self.openacc:
option_string += "--openacc "
if self.mpi is not None:
mpi_string = "--mpi=" + str(self.mpi) + " " # Set mpi
else:
mpi_string = ""
if self.seed is not None:
seed_string = "--seed=" + str(self.seed) + " " # Set seed
else:
seed_string = ""
option_string = (option_string
+ "-n " + str(self.ncount) + " " # Set ncount
+ mpi_string
+ seed_string)
if os.path.exists(self.data_folder_name):
if self.increment_folder_name:
counter = 0
new_name = self.data_folder_name + "_" + str(counter)
while os.path.isdir(new_name):
counter = counter + 1
new_name = self.data_folder_name + "_" + str(counter)
self.data_folder_name = new_name
else:
raise NameError("output_path already exists and "
+ "increment_folder_name was set to False.")
if len(self.data_folder_name) > 0:
option_string = (option_string
+ "-d "
+ self.data_folder_name)
# add parameters to command
parameter_string = ""
for key, val in self.parameters.items():
parameter_string = (parameter_string + " "
+ str(key) # parameter name
+ "="
+ str(val)) # parameter value
mcrun_full_path = os.path.join(self.executable_path, self.executable)
if len(self.executable_path) > 1:
if not (self.executable_path[-1] == "\\"
or self.executable_path[-1] == "/"):
mcrun_full_path = os.path.join(self.executable_path,
self.executable)
mcrun_full_path = '"' + mcrun_full_path + '"' # Path in quotes to allow spaces
# Run the mcrun command on the system
full_command = (mcrun_full_path + " "
+ option_string + " "
+ self.custom_flags + " "
+ self.name_of_instrumentfile
+ parameter_string)
process = subprocess.run(full_command, shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
universal_newlines=True,
cwd=self.run_path)
if self.suppress_output is False:
print_sim_output(process.stdout)
if not os.path.isdir(self.data_folder_name):
warnings.warn("Simulation did not create data folder, most likely failed.")
def load_results(self, *args):
"""
Method for loading data from a mcstas simulation
Loads data on all monitors in a McStas data folder, and returns these
as a list of McStasData objects.
Parameters
----------
optional first argument : str
path to folder from which data should be loaded
"""
if len(args) == 0:
data_folder_name = self.data_folder_name
elif len(args) == 1:
data_folder_name = args[0]
else:
raise RuntimeError("load_results can be called "
+ "with 0 or 1 arguments")
if os.path.isdir(data_folder_name):
return load_results(data_folder_name)
else:
warnings.warn("No data available to load.")
return None
def load_results(data_folder_name):
"""
Function for loading data from a mcstas simulation
Loads data on all monitors in a McStas data folder, and returns these
as a list of McStasData objects.
Parameters
----------
data_folder_name : str
path to folder from which data should be loaded
"""
if not os.path.isdir(data_folder_name):
raise NameError("Given data directory does not exist.")
# Find all data files in generated folder
files_in_folder = os.listdir(data_folder_name)
# Raise an error if mccode.sim is not available
if "mccode.sim" in files_in_folder:
NeXus = False
elif "mccode.h5" in files_in_folder:
NeXus = True
else:
raise NameError("No mccode.sim or mccode.h5 in data folder.")
if NeXus:
# Open mccode to read metadata for all datasets written to disk
with h5py.File(os.path.join(data_folder_name, "mccode.h5"), "r", swmr=True) as f:
# Pass file object to all functions to avoid multiple open / close
metadata_list = load_metadata_nexus(f)
results = []
for metadata in metadata_list:
result = load_monitor_nexus(metadata, f)
result.set_data_location(data_folder_name)
results.append(result)
else:
# Older workflow, still handles both text and NeXus
metadata_list = load_metadata(data_folder_name)
results = []
for metadata in metadata_list:
result = load_monitor(metadata, data_folder_name)
result.set_data_location(data_folder_name)
results.append(result)
return results
def load_metadata(data_folder_name):
"""
Function that loads metadata from a mcstas simulation
Returns list of metadata objects corresponding to each monitor, all
information is taken from mccode.sim file.
Parameters
----------
first argument : str
path to folder from which metadata should be loaded
"""
if not os.path.isdir(data_folder_name):
raise NameError("Given data directory does not exist.")
# Find all data files in generated folder
files_in_folder = os.listdir(data_folder_name)
# Raise an error if mccode.sim is not available
if "mccode.sim" in files_in_folder:
return load_metadata_text(data_folder_name)
elif "mccode.h5" in files_in_folder:
with h5py.File(os.path.join(data_folder_name, "mccode.h5"), "r", swmr=True) as f:
return load_metadata_nexus(f)
else:
raise NameError("No mccode.sim or mccode.h5 in data folder.")
def load_metadata_text(data_folder_name):
instrument_parameters = {}
# Open mccode to read metadata for all datasets written to disk
with open(os.path.join(data_folder_name, "mccode.sim"), "r") as f:
# Loop that reads mccode.sim sections
metadata_list = []
current_object = None
in_data = False
in_sim = False
for lines in f:
# Could read other details about run
if lines == "end data\n":
# No more data for this metadata object
# Add parameter information
current_object.add_info("Parameters", instrument_parameters)
# Extract the information
current_object.extract_info()
# Add to metadata list
if current_object.filename != "":
metadata_list.append(current_object)
# Stop reading data
in_data = False
if in_sim:
if "Param" in lines:
parm_lst = lines.split(':')[1].split('=')
try:
value = float(parm_lst[1].strip())
except ValueError:
value = parm_lst[1].strip()
instrument_parameters[parm_lst[0].strip()] = value
if in_data:
# This line contains info to be added to metadata
colon_index = lines.index(":")
key = lines[2:colon_index]
value = lines[colon_index + 2:].strip()
current_object.add_info(key, value)
if lines == "begin data\n":
# Found data section, create new metadata object
current_object = McStasMetaData()
# Start recording data to metadata object
in_data = True
if 'begin simulation:' in lines:
in_sim = True
if 'end simulation:' in lines:
in_sim = False
# Close mccode.sim
f.close()
"""
# Create a list for McStasData instances to return
results = []
# Load datasets described in metadata list individually
for metadata in metadata_list:
# Load data with numpy
data = np.loadtxt(data_folder_name
+ "/"
+ metadata.filename.rstrip())
# Split data into intensity, error and ncount
if type(metadata.dimension) == int and metadata.dimension == 0:
Intensity = data.T
if type(metadata.dimension) == int and metadata.dimension != 0:
xaxis = data.T[0, :]
Intensity = data.T[1, :]
Error = data.T[2, :]
Ncount = data.T[3, :]
elif len(metadata.dimension) == 2:
xaxis = [] # Assume evenly binned in 2d
data_lines = metadata.dimension[1]
Intensity = data.T[:, 0:data_lines - 1]
Error = data.T[:, data_lines:2*data_lines - 1]
Ncount = data.T[:, 2*data_lines:3*data_lines - 1]
"""
return metadata_list
def load_metadata_nexus(file_object):
instrument_parameters = {}
f = file_object
if "entry1" not in list(f.keys()):
raise ValueError("h5 file not formatted as expected.")
if "data" not in list(f["entry1"].keys()):
raise ValueError("h5 file not formatted as expected.")
if "simulation" not in list(f["entry1"].keys()):
raise ValueError("h5 file not formatted as expected.")
if "Param" not in list(f["entry1"]["simulation"].keys()):
raise ValueError("h5 file not formatted as expected.")
# Common information
# Instrument parameters
instrument_parameters = {}
loaded_par_dict = f["entry1"]["simulation"]["Param"].attrs
for par_name in loaded_par_dict:
if par_name == "NX_class":
continue
try:
value = float(loaded_par_dict[par_name])
except:
value = str(loaded_par_dict[par_name])
instrument_parameters[par_name] = value
metadata_list = []
# For each entry in data, make a metadata object
for key in f["entry1"]["data"].keys():
# Make the metadata object and add instrument parameters
metadata = McStasMetaData()
metadata.add_info("Parameters", instrument_parameters)
# Add NeXus field name
metadata.add_info("NeXus_field", key)
# Add all the read info from attribute section
info = dict(f["entry1"]["data"][key].attrs)
info = decode_dict(info)
for name, value in info.items():
if isinstance(value, bytes):
value = value.decode('utf-8')
metadata.add_info(name, value)
metadata_list.append(metadata)
# Now all info is added, extract info loads it into nice attributes
metadata.extract_info()
return metadata_list
def decode_dict(dictionary):
for key, value in dictionary.items():
if isinstance(value, bytes):
try:
dictionary[key] = value.decode('utf-8')
except:
# Investigate cases where this fail when reading from nexus
dictionary[key] = value.decode('utf-8', errors='replace') # Replaces invalid bytes with '?'
return dictionary
def load_monitor(metadata, data_folder_name):
"""
Switches to appropriate loader function
"""
if "NeXus_field" in metadata.info:
with h5py.File(os.path.join(data_folder_name, "mccode.h5"), "r", swmr=True) as f:
return load_monitor_nexus(metadata, f)
else:
return load_monitor_text(metadata, data_folder_name)
def load_monitor_nexus(metadata, file_object):
"""
Function that loads data given metadata and name of data folder
This version is for a nexus file
Loads data for single monitor and returns a McStasData object
Parameters
----------
metadata : McStasMetaData object
McStasMetaData object corresponding to the monitor to be loaded
file_object : h5py file object in read mode
"""
f = file_object
if "entry1" not in list(f.keys()):
raise ValueError("h5 file not formatted as expected.")
if "data" not in list(f["entry1"].keys()):
raise ValueError("h5 file not formatted as expected.")
if "simulation" not in list(f["entry1"].keys()):
raise ValueError("h5 file not formatted as expected.")
if "Param" not in list(f["entry1"]["simulation"].keys()):
raise ValueError("h5 file not formatted as expected.")
NeXus_field = metadata.info["NeXus_field"]
available_fields = f["entry1"]["data"][NeXus_field].keys()
if not metadata.dimension == 0 and "events" not in available_fields:
if "data" not in available_fields:
raise ValueError("NeXus reading: data not found! \n"
+ "Monitor metadata:\n" + str(metadata))
if "errors" not in available_fields:
raise ValueError("NeXus reading: errors not found! \n"
+ "Monitor metadata:\n" + str(metadata))
if "ncount" not in available_fields:
raise ValueError("NeXus reading: ncount not found! \n"
+ "Monitor metadata:\n" + str(metadata))
# Need to check if it is binned data or event data
if "events" in available_fields:
Events = np.array(f["entry1"]["data"][NeXus_field]["events"])
return McStasDataEvent(metadata, Events)
# Split data into intensity, error and ncount
if type(metadata.dimension) == int and metadata.dimension == 0:
if "data" in f["entry1"]["data"][NeXus_field].keys():
raise ValueError("Found array data in 0D dataset?")
values = None
if "values" in f["entry1"]["data"][NeXus_field].keys():
values = np.array(f["entry1"]["data"][NeXus_field]["values"])
if metadata.total_I is None:
if values is not None:
Intensity = np.array(values[0])
else:
raise ValueError("No info on this monitor can be found "
+ "in reading of NeXus file "
+ str(metadata))
else:
Intensity = np.array(metadata.total_I)
if metadata.total_E is None:
if values is not None:
Error = np.array(values[2])
else:
Error = np.zeros(1)
else:
Error = np.array(metadata.total_E)
if metadata.total_N is None:
if values is not None:
Ncount = np.array(values[3])
else:
Ncount = np.zeros(1)
else:
Ncount = np.array(metadata.total_N)
return McStasDataBinned(metadata, Intensity, Error, Ncount)
elif type(metadata.dimension) == int and metadata.dimension != 0:
original_xlabel = metadata.info["xlabel"]
# All special characters are substituted with _ in McStas NeXus file
x_field = re.sub(r'[^a-zA-Z]', "_", original_xlabel)
if x_field not in f["entry1"]["data"][NeXus_field].keys():
error_text = ("Didn't find xaxis in NeXus file. \n"
+ "Expected this field for x axis: "
+ str(x_field) + "\n"
+ "Existing fields: "
+ str(f["entry1"]["data"][NeXus_field].keys()))
raise ValueError(error_text)
xaxis = np.array(f["entry1"]["data"][NeXus_field][x_field])
Intensity = np.array(f["entry1"]["data"][NeXus_field]["data"])
Error = np.array(f["entry1"]["data"][NeXus_field]["errors"])
Ncount = np.array(f["entry1"]["data"][NeXus_field]["ncount"])
# The data is saved as a McStasDataBinned object
return McStasDataBinned(metadata, Intensity, Error, Ncount, xaxis=xaxis)
elif len(metadata.dimension) == 2:
xaxis = [] # Assume evenly binned in 2d
Intensity = np.array(f["entry1"]["data"][NeXus_field]["data"]).T
Error = np.array(f["entry1"]["data"][NeXus_field]["errors"]).T
Ncount = np.array(f["entry1"]["data"][NeXus_field]["ncount"]).T
# The data is saved as a McStasDataBinned object
return McStasDataBinned(metadata, Intensity, Error, Ncount, xaxis=xaxis)
else:
raise NameError(
"Dimension not read correctly in data set "
+ "connected to monitor named "
+ metadata.component_name)
def load_monitor_text(metadata, data_folder_name):
"""
Function that loads data given metadata and name of data folder
This version is for a text file
Loads data for single monitor and returns a McStasData object
Parameters
----------
metadata : McStasMetaData object
McStasMetaData object corresponding to the monitor to be loaded
data_folder_name : str
path to folder from which metadata should be loaded
"""
# Load data with numpy
filename = os.path.join(data_folder_name, metadata.filename.rstrip())
data = np.loadtxt(filename)
# Split data into intensity, error and ncount
if type(metadata.dimension) == int and metadata.dimension == 0:
Intensity = data.T
if metadata.total_E is None:
Error = np.zeros(1)
else:
Error = np.array(metadata.total_E)
if metadata.total_N is None:
Ncount = np.zeros(1)
else:
Ncount = np.array(metadata.total_N)
return McStasDataBinned(metadata, Intensity, Error, Ncount)
elif type(metadata.dimension) == int and metadata.dimension != 0:
xaxis = data.T[0, :]
Intensity = data.T[1, :]
Error = data.T[2, :]
Ncount = data.T[3, :]
# The data is saved as a McStasDataBinned object
return McStasDataBinned(metadata, Intensity, Error, Ncount, xaxis=xaxis)
elif len(metadata.dimension) == 2:
# Need to check if it is binned data or event data
with open(filename, 'rb', 0) as file, \
mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ) as s:
if s.find(b'# Errors') != -1:
data_type = "Binned"
else:
data_type = "Events"
if data_type == "Events":
Events = data
return McStasDataEvent(metadata, Events)
elif data_type == "Binned":
# Binned 2D data
xaxis = [] # Assume evenly binned in 2d
data_lines = metadata.dimension[1]
Intensity = data[0:data_lines, :]
Error = data[data_lines:2 * data_lines, :]
Ncount = data[2 * data_lines:3 * data_lines, :]
# The data is saved as a McStasDataBinned object
return McStasDataBinned(metadata, Intensity, Error, Ncount, xaxis=xaxis)
else:
raise NameError(
"Dimension not read correctly in data set "
+ "connected to monitor named "
+ metadata.component_name)
def print_sim_output(sim_output):
print(highlight(sim_output, "error", return_section=True, after_lines=10, highlight_type="FAIL"))
print(highlight(sim_output, "error", return_section=False, highlight_type="FAIL"))
def highlight(string, search_term, return_section=False, highlight_type=None, after_lines=5):
"""
Highlights search term in string and returns it, if return_section only sections with term is returned
"""
search_term = search_term.lower()
if not isinstance(string, str):
return None
# Early exit if search term is not in string
output = string.lower().find(search_term)
if output == -1:
if return_section:
return ""
else:
return string
if return_section:
instances = list(findall(string, search_term))
n_instances = len(instances)
print(f"---- Found {n_instances} places in McStas output with "
f"keyword '{search_term}'. \n")
if highlight_type is None:
highlight_start = ""
highlight_end = ""
else:
if not hasattr(bcolors, highlight_type):
raise RuntimeError(f"Used highlight_type {highlight_type} "
f"in highlight not found in bcolors.")
else:
highlight_start = getattr(bcolors, highlight_type)
highlight_end = bcolors.ENDC
return_string = ""
lines = string.split("\n")
total_lines = len(lines)
for index, line in enumerate(lines):
output = line.lower().find(search_term)
if output == -1:
if not return_section:
return_string += line + "\n"
else:
replaced_string = line[:output]
replaced_string += highlight_start
replaced_string += line[output:output + len(search_term)]
replaced_string += highlight_end
replaced_string += line[output + len(search_term):]
replaced_string += "\n"
return_string += replaced_string
if return_section:
extra_lines = min(total_lines - index, after_lines)
for line_index in range(1, extra_lines):
line_to_include = lines[index + line_index]
if line_to_include.lower().find(search_term) != -1:
break
return_string += line_to_include + "\n"
return_string += "-"*70 + "\n"
return return_string
def findall(s, p):
"""
Yields all the positions of the pattern p in the string s.
"""
i = s.lower().find(p)
while i != -1:
yield i
i = s.lower().find(p, i+1)
|