1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
import io
import os
import unittest
import unittest.mock
import matplotlib as plt
import threading
from mcstasscript.interface import instr, functions
from mcstasscript.jb_interface.simulation_interface import SimInterface
class FakeChange:
def __init__(self, new=None, old=None, name=None):
self.new = new
self.old = old
self.name = name
def setup_complex_instrument():
"""
Sets up guide system with two guides that are placed next to one
another with separate entrances but converge at the end.
It attempts to use as many McStas keywords and features as possible.
"""
Instr = instr.McStas_instr("integration_test_complex",
author="test_suite",
origin="integration tests")
Instr.add_parameter("guide_width", value=0.03)
Instr.add_parameter("guide_length", value=8.0)
source = Instr.add_component("source", "Source_simple")
source.xwidth = 0.1
source.yheight = 0.01
source.dist = 1.5
source.focus_xw = "3*guide_width"
source.focus_yh = 0.05
source.E0 = 5.0
source.dE = 1.0
source.flux = 1E10
Instr.add_declare_var("int", "guide_choice")
Instr.add_declare_var("double", "source_to_guide_end")
Instr.append_initialize("source_to_guide_end = 1.5 + guide_length;")
after_guide = Instr.add_component("after_guide", "Arm",
AT=[0, 0, "source_to_guide_end"],
RELATIVE="source")
after_guide.append_EXTEND("guide_choice = -1;")
# Add first slit with component methods
slit1 = Instr.add_component("slit1", "Slit")
slit1.set_AT(["1.3*guide_width", 0, 1.5], RELATIVE="source")
slit1.xwidth = "guide_width"
slit1.yheight = 0.05
slit1.append_EXTEND("if (SCATTERED) {")
slit1.append_EXTEND(" guide_choice = 1;")
slit1.append_EXTEND("}")
slit1.set_GROUP("entrance_slits")
# Add second slit with set_parameters
slit2 = Instr.add_component("slit2", "Slit")
slit2.set_AT(["-1.3*guide_width", 0, 1.5])
slit2.set_RELATIVE("source")
slit2.set_parameters(xwidth="guide_width", yheight=0.05)
slit2.append_EXTEND("if (SCATTERED) {")
slit2.append_EXTEND(" guide_choice = 2;")
slit2.append_EXTEND("}")
slit2.set_GROUP("entrance_slits")
select1 = Instr.add_component("select1", "Arm", RELATIVE="after_guide")
select1.set_JUMP("select2 WHEN guide_choice == 2")
guide1 = Instr.add_component("guide1", "Guide_gravity")
guide1.set_AT([0, 0, 0.1], RELATIVE="slit1")
guide1.set_ROTATED([0, "-RAD2DEG*atan(0.5*guide_width/guide_length)", 0],
RELATIVE="slit1")
guide1.w1 = "guide_width"
guide1.w2 = "1.3*guide_width"
guide1.h1 = 0.05
guide1.h2 = 0.05
guide1.l = "guide_length"
guide1.m = 4
guide1.G = -9.82
select2 = Instr.add_component("select2", "Arm", RELATIVE="after_guide")
select2.set_JUMP("done WHEN guide_choice == 1")
guide2 = Instr.add_component("guide2", "Guide_gravity")
guide2.set_AT([0, 0, 0.1], RELATIVE="slit2")
guide2.set_ROTATED([0, "RAD2DEG*atan(0.5*guide_width/guide_length)", 0],
RELATIVE="slit2")
guide2.w1 = "guide_width"
guide2.w2 = "1.3*guide_width"
guide2.h1 = 0.05
guide2.h2 = 0.05
guide2.l = "guide_length"
guide2.m = 4
guide2.G = -9.82
guide2.set_SPLIT = 2
Instr.add_component("done", "Arm", RELATIVE="after_guide")
PSD1 = Instr.add_component("PSD_1D_1", "PSDlin_monitor")
PSD1.set_AT([0, 0, 0.2], RELATIVE="after_guide")
PSD1.xwidth = 0.1
if Instr.mccode_version > 2:
PSD1.nbins = 100
else:
PSD1.nx = 100
PSD1.yheight = 0.03
PSD1.filename = "\"PSD1.dat\""
PSD1.restore_neutron = 1
PSD1.set_WHEN("guide_choice == 1")
PSD2 = Instr.add_component("PSD_1D_2", "PSDlin_monitor")
PSD2.set_AT([0, 0, 0.2], RELATIVE="after_guide")
PSD2.xwidth = 0.1
if Instr.mccode_version > 2:
PSD2.nbins = 100
else:
PSD2.nx = 100
PSD2.yheight = 0.03
PSD2.filename = "\"PSD2.dat\""
PSD2.restore_neutron = 1
PSD2.set_WHEN("guide_choice == 2")
PSD = Instr.add_component("PSD_1D", "PSDlin_monitor")
PSD.set_AT([0, 0, 0.2], RELATIVE="after_guide")
PSD.xwidth = 0.1
if Instr.mccode_version > 2:
PSD.nbins = 100
else:
PSD.nx = 100
PSD.yheight = 0.03
PSD.filename = "\"PSD_all.dat\""
PSD.restore_neutron = 1
Instr.append_finally("guide_choice = -1;")
return Instr
class TestComplexInstrument(unittest.TestCase):
"""
Integration test of a full instrument with McStas simulation
performed by the system. The configuration file needs to be set up
correctly in order for these tests to succeed.
"""
@unittest.mock.patch("sys.stdout", new_callable=io.StringIO)
def test_complex_instrument_run(self, mock_stdout):
"""
Test parameters can be controlled through McStasScript. Here
a slit is moved to one side and the result is verified.
"""
CURRENT_DIR = os.getcwd()
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
os.chdir(THIS_DIR)
Instr = setup_complex_instrument()
data = Instr.run_full_instrument(foldername="integration_test_complex",
ncount=2E6, mpi=2,
increment_folder_name=True,
parameters={"guide_width": 0.03,
"guide_length": 8.0})
os.chdir(CURRENT_DIR)
intensity_data_pos = functions.name_search("PSD_1D_1", data).Intensity
sum_outside_beam = sum(intensity_data_pos[0:50])
sum_inside_beam = sum(intensity_data_pos[51:99])
self.assertTrue(1000*sum_outside_beam < sum_inside_beam)
intensity_data_neg = functions.name_search("PSD_1D_2", data).Intensity
sum_outside_beam = sum(intensity_data_neg[51:99])
sum_inside_beam = sum(intensity_data_neg[0:50])
self.assertTrue(1000*sum_outside_beam < sum_inside_beam)
intensity_data_all = functions.name_search("PSD_1D", data).Intensity
sum_outside_beam = sum(intensity_data_all[49:51])
sum_inside_beam = (sum(intensity_data_all[0:45])
+ sum(intensity_data_all[56:99]))
self.assertTrue(1000*sum_outside_beam < sum_inside_beam)
# Could have the plot window up for some short time
# Need to use plt.draw instead of plt.show in plotter
# plotter.make_sub_plot(data)
# time.sleep(10)
# plt.close()
@unittest.mock.patch("sys.stdout", new_callable=io.StringIO)
def test_complex_instrument_interface(self, mock_stdout):
"""
Test that a simulation can be performed through the simulation
interface, or as close as I can through scripting.
Need to join the simulation thread to the main thread in order
to wait for the completion as it is performed in a new thread.
"""
CURRENT_DIR = os.getcwd()
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
os.chdir(THIS_DIR)
Instr = setup_complex_instrument()
interface = SimInterface(Instr)
interface.show_interface()
change = FakeChange()
"""
interface.run_simulation_thread(change)
for thread in threading.enumerate():
if thread.name != "MainThread":
thread.join()
"""
interface.run_simulation_live(change)
data = interface.plot_interface.data
os.chdir(CURRENT_DIR)
print(data)
intensity_data_pos = functions.name_search("PSD_1D_1", data).Intensity
sum_outside_beam = sum(intensity_data_pos[0:50])
sum_inside_beam = sum(intensity_data_pos[51:99])
self.assertTrue(1000 * sum_outside_beam < sum_inside_beam)
intensity_data_neg = functions.name_search("PSD_1D_2", data).Intensity
sum_outside_beam = sum(intensity_data_neg[51:99])
sum_inside_beam = sum(intensity_data_neg[0:50])
self.assertTrue(1000 * sum_outside_beam < sum_inside_beam)
intensity_data_all = functions.name_search("PSD_1D", data).Intensity
sum_outside_beam = sum(intensity_data_all[49:51])
sum_inside_beam = (sum(intensity_data_all[0:45])
+ sum(intensity_data_all[56:99]))
self.assertTrue(1000 * sum_outside_beam < sum_inside_beam)
if __name__ == '__main__':
unittest.main()
|