1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
import unittest
import unittest.mock
import matplotlib
matplotlib.use('Agg')
import numpy as np
import matplotlib.pyplot as plt
from mcstasscript.data.data import McStasDataBinned
from mcstasscript.data.data import McStasMetaData
from mcstasscript.interface.plotter import _find_min_max_I
from mcstasscript.interface.plotter import _handle_kwargs
from mcstasscript.interface.plotter import _plot_fig_ax
from mcstasscript.interface.plotter import make_plot, make_sub_plot, make_animation
def get_dummy_MetaDataBinned_1d():
meta_data = McStasMetaData()
meta_data.component_name = "component for 1d"
meta_data.dimension = 50
meta_data.limits = [0.1, 1.1]
meta_data.title = "test"
meta_data.xlabel = "test x"
meta_data.ylabel = "test y"
return meta_data
def get_dummy_McStasDataBinned_1d():
meta_data = get_dummy_MetaDataBinned_1d()
intensity = np.arange(20) + 5
error = 0.5 * np.arange(20)
ncount = 2 * np.arange(20)
axis = np.arange(20)*5.0
return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis)
def get_dummy_MetaDataBinned_2d():
meta_data = McStasMetaData()
meta_data.component_name = "test a component"
meta_data.dimension = [5, 4]
meta_data.limits = [0.1, 1.1, 2.0, 4.0]
meta_data.title = "test"
meta_data.xlabel = "test x"
meta_data.ylabel = "test y"
return meta_data
def get_dummy_McStasDataBinned_2d():
meta_data = get_dummy_MetaDataBinned_2d()
intensity = np.arange(20).reshape(4, 5) + 5
error = 0.5 * np.arange(20).reshape(4, 5)
ncount = 2 * np.arange(20).reshape(4, 5)
return McStasDataBinned(meta_data, intensity, error, ncount)
class TestPlotterHelpers(unittest.TestCase):
"""
Tests of plotter help functions
"""
def test_find_min_max_I_simple_1D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set
"""
dummy_data = get_dummy_McStasDataBinned_1d()
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertEqual(found_min, 5)
self.assertEqual(found_max, 19 + 5)
def test_find_min_max_I_cut_max_1D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_max is used to limit the maximum plotted.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
dummy_data.set_plot_options(cut_max=0.8)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertEqual(found_min, 5)
self.assertEqual(found_max, (19 + 5)*0.8)
def test_find_min_max_I_cut_min_1D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_min is used to limit the minimum plotted.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
dummy_data.set_plot_options(cut_min=0.2)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertEqual(found_min, 5 + (24-5)*0.2)
self.assertEqual(found_max, 19 + 5)
def test_find_min_max_I_log_with_zero_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here a bin contains zero intensity and log mode is enabled,
since log(0) is not allowed, this data point should be
ignored.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
dummy_data.Intensity[5] = 0
dummy_data.set_plot_options(log=True)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertAlmostEqual(found_min, 5)
self.assertAlmostEqual(found_max, 19 + 5)
def test_find_min_max_I_log_cut_max_1D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_max is used to limit the maximum plotted while
log mode is enabled.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
dummy_data.set_plot_options(cut_max=0.8, log=True)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertAlmostEqual(found_min, 5)
self.assertAlmostEqual(found_max, (19 + 5)*0.8)
def test_find_min_max_I_log_cut_min_1D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_min is used to limit the minimum plotted while
log mode is enabled.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
dummy_data.set_plot_options(cut_min=0.2, log=True)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertAlmostEqual(found_min, 5 + (24-5)*0.2)
self.assertAlmostEqual(found_max, 19 + 5)
def test_find_min_max_I_log_orders_of_mag_1D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here orders_of_mag is used to limit the minimum plotted
while log mode is enabled.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
dummy_data.Intensity[5] = 10**6
dummy_data.set_plot_options(log=True, orders_of_mag=3)
found_min, found_max = _find_min_max_I(dummy_data)
self.assertAlmostEqual(found_min, 10**3)
self.assertAlmostEqual(found_max, 10**6)
def test_find_min_max_I_log_orders_of_mag_1D_with_zero_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here orders_of_mag is used to limit the minimum plotted
while log mode is enabled. A bin in the data contains
zero intensity, which should be ignored.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
dummy_data.Intensity[5] = 10**6
dummy_data.Intensity[6] = 0
dummy_data.set_plot_options(log=True, orders_of_mag=3)
found_min, found_max = _find_min_max_I(dummy_data)
self.assertAlmostEqual(found_min, 10**3)
self.assertAlmostEqual(found_max, 10**6)
def test_find_min_max_I_simple_2D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set
"""
dummy_data = get_dummy_McStasDataBinned_2d()
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertEqual(found_min, 5)
self.assertEqual(found_max, 19 + 5)
def test_find_min_max_I_cut_max_2D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_max is used to limit the maximum plotted.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.set_plot_options(cut_max=0.8)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertEqual(found_min, 5)
self.assertEqual(found_max, (19 + 5)*0.8)
def test_find_min_max_I_cut_min_2D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_min is used to limit the minimum plotted.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.set_plot_options(cut_min=0.2)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertEqual(found_min, 5 + (24-5)*0.2)
self.assertEqual(found_max, 19 + 5)
def test_find_min_max_I_log_with_zero_2D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here a bin contains zero intensity and log mode is enabled,
since log(0) is not allowed, this data point should be
ignored.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.Intensity[2, 2] = 0
dummy_data.set_plot_options(log=True)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertAlmostEqual(found_min, 5)
self.assertAlmostEqual(found_max, 19 + 5)
def test_find_min_max_I_log_cut_max_2D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_max is used to limit the maximum plotted while
log mode is enabled.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.set_plot_options(cut_max=0.8, log=True)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertAlmostEqual(found_min, 5)
self.assertAlmostEqual(found_max, (19 + 5)*0.8)
def test_find_min_max_I_log_cut_min_2D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here cut_min is used to limit the minimum plotted while
log mode is enabled.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.set_plot_options(cut_min=0.2, log=True)
found_min, found_max = _find_min_max_I(dummy_data)
# np.arange(20) + 5: min = 5, max = 5+19 = 24
self.assertAlmostEqual(found_min, 5 + (24-5)*0.2)
self.assertAlmostEqual(found_max, 19 + 5)
def test_find_min_max_I_log_orders_of_mag_2D_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here orders_of_mag is used to limit the minimum plotted
while log mode is enabled.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.Intensity[2, 2] = 10**6
dummy_data.set_plot_options(log=True, orders_of_mag=3)
found_min, found_max = _find_min_max_I(dummy_data)
self.assertAlmostEqual(found_min, 10**3)
self.assertAlmostEqual(found_max, 10**6)
def test_find_min_max_I_log_orders_of_mag_2D_with_zero_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here orders_of_mag is used to limit the minimum plotted
while log mode is enabled. A bin in the data contains
zero intensity, which should be ignored.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.Intensity[2, 2] = 10**6
dummy_data.Intensity[2, 3] = 0
dummy_data.set_plot_options(log=True, orders_of_mag=3)
found_min, found_max = _find_min_max_I(dummy_data)
self.assertAlmostEqual(found_min, 10**3)
self.assertAlmostEqual(found_max, 10**6)
def test_find_min_max_I_fail_case(self):
"""
test _find_min_max_I for a 1D case, it finds the minimum
and maximum value to plot for a given McStasData set.
Here orders_of_mag is used to limit the minimum plotted
while log mode is enabled. A bin in the data contains
zero intensity, which should be ignored.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
dummy_data.Intensity = np.zeros((5, 5))
dummy_data.set_plot_options(log=True, orders_of_mag=3)
found_min, found_max = _find_min_max_I(dummy_data)
self.assertEqual(found_min, 0)
self.assertEqual(found_max, 0)
def test_handle_kwargs_log(self):
"""
Tests handle_kwargs with log option
Keyword args can be set for all by normal use, or individual
data sets by using a list. Both are checked here.
"""
dummy_data1 = get_dummy_McStasDataBinned_2d()
dummy_data2 = get_dummy_McStasDataBinned_2d()
self.assertEqual(dummy_data1.plot_options.log, False)
self.assertEqual(dummy_data2.plot_options.log, False)
data_list = [dummy_data1, dummy_data2]
_handle_kwargs(data_list, log=True)
self.assertEqual(dummy_data1.plot_options.log, True)
self.assertEqual(dummy_data2.plot_options.log, True)
_handle_kwargs(data_list, log=[False, True])
self.assertEqual(dummy_data1.plot_options.log, False)
self.assertEqual(dummy_data2.plot_options.log, True)
def test_handle_kwargs_oders_of_mag(self):
"""
Tests handle_kwargs with orders_of_mag option
Keyword args can be set for all by normal use, or individual
data sets by using a list. Both are checked here.
"""
dummy_data1 = get_dummy_McStasDataBinned_2d()
dummy_data2 = get_dummy_McStasDataBinned_2d()
self.assertEqual(dummy_data1.plot_options.orders_of_mag, 300)
self.assertEqual(dummy_data2.plot_options.orders_of_mag, 300)
data_list = [dummy_data1, dummy_data2]
_handle_kwargs(data_list, orders_of_mag=12)
self.assertEqual(dummy_data1.plot_options.orders_of_mag, 12)
self.assertEqual(dummy_data2.plot_options.orders_of_mag, 12)
_handle_kwargs(data_list, orders_of_mag=[50, 10])
self.assertEqual(dummy_data1.plot_options.orders_of_mag, 50)
self.assertEqual(dummy_data2.plot_options.orders_of_mag, 10)
def test_handle_kwargs_all_simple(self):
"""
Tests handle_kwargs with all simple options option
Keyword args can be set for all by normal use, or individual
data sets by using a list. Both are checked here.
"""
known_plot = ["log", "orders_of_mag",
"cut_min", "cut_max",
"colormap", "show_colorbar",
"x_axis_multiplier",
"y_axis_multiplier"]
kwargs_to_attr = {"x_axis_multiplier": "x_limit_multiplier",
"y_axis_multiplier": "y_limit_multiplier"}
defaults = {"log": False, "orders_of_mag": 300,
"cut_min": 0, "cut_max": 1,
"colormap": "jet", "show_colorbar": True,
"x_limit_multiplier": 1, "y_limit_multiplier": 1}
test_value = {"log": True, "orders_of_mag": 15,
"cut_min": 0.25, "cut_max": 0.8,
"colormap": "hot", "show_colorbar": False,
"x_limit_multiplier": 2.8, "y_limit_multiplier": 0.8}
for option in known_plot:
if option in kwargs_to_attr:
kw_option = kwargs_to_attr[option]
else:
kw_option = option
default_value = defaults[kw_option]
dummy_data1 = get_dummy_McStasDataBinned_2d()
data1_value = dummy_data1.plot_options.__getattribute__(kw_option)
self.assertEqual(data1_value, default_value)
dummy_data2 = get_dummy_McStasDataBinned_2d()
data2_value = dummy_data2.plot_options.__getattribute__(kw_option)
self.assertEqual(data2_value, default_value)
data_list = [dummy_data1, dummy_data2]
set_value = test_value[kw_option]
given_option = {option: set_value}
_handle_kwargs(data_list, **given_option)
data1_value = dummy_data1.plot_options.__getattribute__(kw_option)
self.assertEqual(data1_value, set_value)
data2_value = dummy_data2.plot_options.__getattribute__(kw_option)
self.assertEqual(data2_value, set_value)
given_option = {option: [set_value, default_value]}
_handle_kwargs(data_list, **given_option)
data_1_value = dummy_data1.plot_options.__getattribute__(kw_option)
self.assertEqual(data_1_value, set_value)
data_2_value = dummy_data2.plot_options.__getattribute__(kw_option)
self.assertEqual(data_2_value, default_value)
def test_handle_kwargs_left_lim(self):
"""
Tests handle_kwargs with left_lim option
Keyword args can be set for all by normal use, or individual
data sets by using a list. Both are checked here.
"""
dummy_data1 = get_dummy_McStasDataBinned_2d()
dummy_data2 = get_dummy_McStasDataBinned_2d()
self.assertEqual(dummy_data1.plot_options.custom_xlim_left, False)
self.assertEqual(dummy_data2.plot_options.custom_xlim_left, False)
data_list = [dummy_data1, dummy_data2]
_handle_kwargs(data_list, left_lim=0.08)
self.assertEqual(dummy_data1.plot_options.left_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.left_lim, 0.08)
self.assertEqual(dummy_data1.plot_options.custom_xlim_left, True)
self.assertEqual(dummy_data2.plot_options.custom_xlim_left, True)
_handle_kwargs(data_list, left_lim=[0.08, 1.08])
self.assertEqual(dummy_data1.plot_options.left_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.left_lim, 1.08)
self.assertEqual(dummy_data1.plot_options.custom_xlim_left, True)
self.assertEqual(dummy_data2.plot_options.custom_xlim_left, True)
def test_handle_kwargs_right_lim(self):
"""
Tests handle_kwargs with right_lim option
Keyword args can be set for all by normal use, or individual
data sets by using a list. Both are checked here.
"""
dummy_data1 = get_dummy_McStasDataBinned_2d()
dummy_data2 = get_dummy_McStasDataBinned_2d()
self.assertEqual(dummy_data1.plot_options.custom_xlim_right, False)
self.assertEqual(dummy_data2.plot_options.custom_xlim_right, False)
data_list = [dummy_data1, dummy_data2]
_handle_kwargs(data_list, right_lim=0.08)
self.assertEqual(dummy_data1.plot_options.right_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.right_lim, 0.08)
self.assertEqual(dummy_data1.plot_options.custom_xlim_right, True)
self.assertEqual(dummy_data2.plot_options.custom_xlim_right, True)
_handle_kwargs(data_list, right_lim=[0.08, 1.08])
self.assertEqual(dummy_data1.plot_options.right_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.right_lim, 1.08)
self.assertEqual(dummy_data1.plot_options.custom_xlim_right, True)
self.assertEqual(dummy_data2.plot_options.custom_xlim_right, True)
def test_handle_kwargs_top_lim(self):
"""
Tests handle_kwargs with top_lim option
Keyword args can be set for all by normal use, or individual
data sets by using a list. Both are checked here.
"""
dummy_data1 = get_dummy_McStasDataBinned_2d()
dummy_data2 = get_dummy_McStasDataBinned_2d()
self.assertEqual(dummy_data1.plot_options.custom_ylim_top, False)
self.assertEqual(dummy_data2.plot_options.custom_ylim_top, False)
data_list = [dummy_data1, dummy_data2]
_handle_kwargs(data_list, top_lim=0.08)
self.assertEqual(dummy_data1.plot_options.top_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.top_lim, 0.08)
self.assertEqual(dummy_data1.plot_options.custom_ylim_top, True)
self.assertEqual(dummy_data2.plot_options.custom_ylim_top, True)
_handle_kwargs(data_list, top_lim=[0.08, 1.08])
self.assertEqual(dummy_data1.plot_options.top_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.top_lim, 1.08)
self.assertEqual(dummy_data1.plot_options.custom_ylim_top, True)
self.assertEqual(dummy_data2.plot_options.custom_ylim_top, True)
def test_handle_kwargs_bottom_lim(self):
"""
Tests handle_kwargs with bottom_lim option
Keyword args can be set for all by normal use, or individual
data sets by using a list. Both are checked here.
"""
dummy_data1 = get_dummy_McStasDataBinned_2d()
dummy_data2 = get_dummy_McStasDataBinned_2d()
self.assertEqual(dummy_data1.plot_options.custom_ylim_bottom, False)
self.assertEqual(dummy_data2.plot_options.custom_ylim_bottom, False)
data_list = [dummy_data1, dummy_data2]
_handle_kwargs(data_list, bottom_lim=0.08)
self.assertEqual(dummy_data1.plot_options.bottom_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.bottom_lim, 0.08)
self.assertEqual(dummy_data1.plot_options.custom_ylim_bottom, True)
self.assertEqual(dummy_data2.plot_options.custom_ylim_bottom, True)
_handle_kwargs(data_list, bottom_lim=[0.08, 1.08])
self.assertEqual(dummy_data1.plot_options.bottom_lim, 0.08)
self.assertEqual(dummy_data2.plot_options.bottom_lim, 1.08)
self.assertEqual(dummy_data1.plot_options.custom_ylim_bottom, True)
self.assertEqual(dummy_data2.plot_options.custom_ylim_bottom, True)
@unittest.mock.patch("matplotlib.pyplot.subplots")
def test_handle_kwargs_figsize_default(self, mock_subplots):
"""
Tests handle_kwargs delivers default figsize
"""
# Ensures subplots returns a tuple with two objects
mock_fig = unittest.mock.MagicMock()
mock_ax = unittest.mock.MagicMock()
mock_subplots.return_value = (mock_fig, mock_ax)
# Actual test
dummy_data = get_dummy_McStasDataBinned_2d()
make_plot(dummy_data)
mock_subplots.assert_called_with(figsize=(13, 7), tight_layout=True)
@unittest.mock.patch("matplotlib.pyplot.subplots")
def test_handle_kwargs_figsize_tuple(self, mock_subplots):
"""
Tests handle_kwargs with figsize keyword argument, here
using tuple as input
"""
# Ensures subplots returns a tuple with two objects
mock_fig = unittest.mock.MagicMock()
mock_ax = unittest.mock.MagicMock()
mock_subplots.return_value = (mock_fig, mock_ax)
# Actual test
dummy_data = get_dummy_McStasDataBinned_2d()
make_plot(dummy_data, figsize=(5, 9))
mock_subplots.assert_called_with(figsize=(5, 9), tight_layout=True)
@unittest.mock.patch("matplotlib.pyplot.subplots")
def test_handle_kwargs_figsize_list(self, mock_subplots):
"""
Tests handle_kwargs with figsize keyword argument, here
using tuple as input
"""
# Ensures subplots returns a tuple with two objects
mock_fig = unittest.mock.MagicMock()
mock_ax = unittest.mock.MagicMock()
mock_subplots.return_value = (mock_fig, mock_ax)
# Actual test
dummy_data = get_dummy_McStasDataBinned_2d()
make_plot(dummy_data, figsize=[5, 9])
mock_subplots.assert_called_with(figsize=(5, 9), tight_layout=True)
def test_handle_kwargs_single_element_to_list(self):
"""
Test handle_kwargs will grab a single McStasData element
and turn it into a list.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
self.assertFalse(isinstance(dummy_data, list))
data_list = _handle_kwargs(dummy_data)
self.assertTrue(isinstance(data_list, list))
def test_plot_function_1D_normal(self):
"""
Run the plot function with 1D data set without showing the
result.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
fig, ax0 = plt.subplots()
_plot_fig_ax(dummy_data, fig, ax0)
def test_plot_function_1D_log(self):
"""
Run the plot function with 1D data set without showing the
result. Here with logarithmic y axis.
"""
dummy_data = get_dummy_McStasDataBinned_1d()
fig, ax0 = plt.subplots()
_plot_fig_ax(dummy_data, fig, ax0, log=True)
def test_plot_function_2D_normal(self):
"""
Run the plot function with 2D data set without showing the
result.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
fig, ax0 = plt.subplots()
_plot_fig_ax(dummy_data, fig, ax0)
def test_plot_function_2D_log(self):
"""
Run the plot function with 2D data set without showing the
result. Here the intensity coloraxis is logarithmic.
"""
dummy_data = get_dummy_McStasDataBinned_2d()
fig, ax0 = plt.subplots()
_plot_fig_ax(dummy_data, fig, ax0, log=True)
|