File: test_add_data.py

package info (click to toggle)
python-mcstasscript 0.0.46%2Bgit20250402111921.bfa5a26-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,440 kB
  • sloc: python: 13,421; makefile: 14
file content (236 lines) | stat: -rw-r--r-- 8,501 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import unittest
import numpy as np
import copy

from mcstasscript.data.data import McStasDataBinned
from mcstasscript.data.data import McStasMetaData
from mcstasscript.jb_interface.simulation_interface import add_data

def set_dummy_MetaDataBinned_1d():
    """
    Sets up simple McStasMetaData object with dimension, 1d case
    """
    meta_data = McStasMetaData()
    meta_data.component_name = "component for 1d"
    meta_data.filename = "data.dat"
    meta_data.dimension = 50

    meta_data.info = {"Ncount" : 40}

    return meta_data


def set_dummy_McStasDataBinned_1d():
    """
    Sets up simple McStasData object, 1d case
    """
    meta_data = set_dummy_MetaDataBinned_1d()

    intensity = np.ones(20)
    error = np.ones(20)
    ncount = np.ones(20)
    axis = np.arange(20)*5.0

    return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis)


def set_dummy_MetaDataBinned_2d():
    """
    Sets up simple McStasMetaData object with dimensions, 2d case
    """
    meta_data = McStasMetaData()
    meta_data.component_name = "test a component"
    meta_data.filename = "data.dat"
    meta_data.dimension = [50, 100]

    meta_data.info = {"Ncount": 40}

    return meta_data


def set_dummy_McStasDataBinned_2d():
    """
    Sets up simple McStasData object, 2d case
    """
    meta_data = set_dummy_MetaDataBinned_2d()

    intensity = np.ones(20).reshape(4, 5)
    error = np.ones(20).reshape(4, 5)
    ncount = np.ones(20).reshape(4, 5)

    return McStasDataBinned(meta_data, intensity, error, ncount)

class Test_add_data(unittest.TestCase):
    def test_1d_updates_correctly(self):
        """
        Test that adding 1d dataset modifies only the intended dataset
        """

        data1 = set_dummy_McStasDataBinned_1d()
        data1_original = copy.deepcopy(data1)

        data2 = set_dummy_McStasDataBinned_1d()
        data2_original = copy.deepcopy(data2)

        add_data([data1], [data2])

        # Data 2 should not be touched
        self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
        self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
        self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))

        # Data 1 Intensity should be unchanged, as data1 and data2 equal
        self.assertTrue(np.array_equal(data1.Intensity, data1_original.Intensity))
        # Data 1 should be updated
        self.assertFalse(np.array_equal(data1.Error, data1_original.Error))
        self.assertFalse(np.array_equal(data1.Ncount, data1_original.Ncount))

    def test_1d_updates_different(self):
        """
        Test that adding 1d datasets work as expected when different
        """
        data1 = set_dummy_McStasDataBinned_1d()
        data1.Intensity *= 2.0
        data1.Intensity[10:] *= 2.0
        data1.Error *= 1.5
        data1.Ncount *= 4.0
        data1.metadata.info["Ncount"] *= 4.0
        data1_original = copy.deepcopy(data1)

        data2 = set_dummy_McStasDataBinned_1d()
        data2.Intensity *= 3.0
        data2.Error *= 1.5
        data2_original = copy.deepcopy(data2)

        add_data([data1], [data2])

        # Data 2 should not be touched
        self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
        self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
        self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))

        # 4 times more weight on data1, intensity 2 and 3
        expected_low_intensity = 4/5*2.0 + 1/5*3.0
        # 4 times more weight on data1, intensity 4 and 3
        expected_high_intensity = 4/5*2.0*2.0 + 1/5*3.0
        expected_error = np.sqrt((4 / 5) ** 2 * 1.5 ** 2 + (1 / 5) ** 2 * 1.5 ** 2)

        for index in range(len(data1_original.Intensity)):
            if index < 10:
                self.assertEqual(data1.Intensity[index], expected_low_intensity)
            else:
                self.assertEqual(data1.Intensity[index], expected_high_intensity)

            self.assertEqual(data1.Error[index], expected_error)
            self.assertEqual(data1.Ncount[index], 5.0)

        self.assertEqual(data1.metadata.info["Ncount"], 40*4+40)

    def test_fail(self):
        """
        Test that adding datasets fail when they dont have the same monitors

        Both 1d and 2d cases included.
        """

        data11 = set_dummy_McStasDataBinned_1d()
        data11.name = "first monitor"
        data11.filename = "first_monitor.dat"
        data12 = set_dummy_McStasDataBinned_2d()
        data12.name = "second monitor"
        data12.filename = "second_monitor.dat"
        data13 = set_dummy_McStasDataBinned_1d()
        data13.name = "third monitor"
        data13.filename = "third_monitor.dat"

        data21 = set_dummy_McStasDataBinned_1d()
        data21.name = "first monitor"
        data21.filename = "first_monitor.dat"
        data22 = set_dummy_McStasDataBinned_2d()
        data22.name = "second monitor"
        data22.filename = "second_monitor.dat"
        data23 = set_dummy_McStasDataBinned_1d()
        data23.name = "third monitor"
        data23.filename = "third_monitor.dat"

        # Should succeed, monitors match
        add_data([data11, data12, data13], [data21, data22, data23])
        # Should succeed, all monitors needed to update first argument present
        add_data([data11, data12], [data21, data22, data23])

        # Should fail if a monitor is missing
        with self.assertRaises(NameError):
            add_data([data11, data12, data13], [data21, data22])

        data23.name = "different monitor"
        # Should fail if name mismatch
        with self.assertRaises(NameError):
            add_data([data11, data12, data13], [data21, data22, data23])

    def test_2d_updates_correctly(self):
        """
        Test that adding 1d dataset modifies only the intended dataset
        """

        data1 = set_dummy_McStasDataBinned_2d()
        data1_original = copy.deepcopy(data1)

        data2 = set_dummy_McStasDataBinned_2d()
        data2_original = copy.deepcopy(data2)

        add_data([data1], [data2])

        # Data 2 should not be touched
        self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
        self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
        self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))

        # Data 1 Intensity should be unchanged, as data1 and data2 equal
        self.assertTrue(np.array_equal(data1.Intensity, data1_original.Intensity))
        # Data 1 should be updated
        self.assertFalse(np.array_equal(data1.Error, data1_original.Error))
        self.assertFalse(np.array_equal(data1.Ncount, data1_original.Ncount))

    def test_2d_updates_different(self):
        """
        Test that adding 2d datasets work as expected when different
        """
        data1 = set_dummy_McStasDataBinned_2d()
        data1.Intensity *= 2.0
        data1.Intensity[1,:] *= 2.0
        data1.Error *= 1.5
        data1.Ncount *= 4.0
        data1.metadata.info["Ncount"] *= 4.0
        data1_original = copy.deepcopy(data1)

        data2 = set_dummy_McStasDataBinned_2d()
        data2.Intensity *= 3.0
        data2.Error *= 1.5
        data2_original = copy.deepcopy(data2)

        add_data([data1], [data2])

        # Data 2 should not be touched
        self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
        self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
        self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))

        # 4 times more weight on data1, intensity 2 and 3
        expected_low_intensity = 4/5*2.0 + 1/5*3.0
        # 4 times more weight on data1, intensity 4 and 3
        expected_high_intensity = 4/5*2.0*2.0 + 1/5*3.0
        expected_error = np.sqrt((4 / 5) ** 2 * 1.5 ** 2 + (1 / 5) ** 2 * 1.5 ** 2)

        for index1 in range(len(data1_original.Intensity[:,0])):
            for index2 in range(len(data1_original.Intensity[0, :])):

                if index1 == 1:
                    self.assertEqual(data1.Intensity[index1, index2], expected_high_intensity)
                else:
                    self.assertEqual(data1.Intensity[index1, index2], expected_low_intensity)

            self.assertEqual(data1.Error[index1, index2], expected_error)
            self.assertEqual(data1.Ncount[index1, index2], 5.0)

        self.assertEqual(data1.metadata.info["Ncount"], 40*4+40)