1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
import unittest
import numpy as np
import copy
from mcstasscript.data.data import McStasDataBinned
from mcstasscript.data.data import McStasMetaData
from mcstasscript.jb_interface.simulation_interface import add_data
def set_dummy_MetaDataBinned_1d():
"""
Sets up simple McStasMetaData object with dimension, 1d case
"""
meta_data = McStasMetaData()
meta_data.component_name = "component for 1d"
meta_data.filename = "data.dat"
meta_data.dimension = 50
meta_data.info = {"Ncount" : 40}
return meta_data
def set_dummy_McStasDataBinned_1d():
"""
Sets up simple McStasData object, 1d case
"""
meta_data = set_dummy_MetaDataBinned_1d()
intensity = np.ones(20)
error = np.ones(20)
ncount = np.ones(20)
axis = np.arange(20)*5.0
return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis)
def set_dummy_MetaDataBinned_2d():
"""
Sets up simple McStasMetaData object with dimensions, 2d case
"""
meta_data = McStasMetaData()
meta_data.component_name = "test a component"
meta_data.filename = "data.dat"
meta_data.dimension = [50, 100]
meta_data.info = {"Ncount": 40}
return meta_data
def set_dummy_McStasDataBinned_2d():
"""
Sets up simple McStasData object, 2d case
"""
meta_data = set_dummy_MetaDataBinned_2d()
intensity = np.ones(20).reshape(4, 5)
error = np.ones(20).reshape(4, 5)
ncount = np.ones(20).reshape(4, 5)
return McStasDataBinned(meta_data, intensity, error, ncount)
class Test_add_data(unittest.TestCase):
def test_1d_updates_correctly(self):
"""
Test that adding 1d dataset modifies only the intended dataset
"""
data1 = set_dummy_McStasDataBinned_1d()
data1_original = copy.deepcopy(data1)
data2 = set_dummy_McStasDataBinned_1d()
data2_original = copy.deepcopy(data2)
add_data([data1], [data2])
# Data 2 should not be touched
self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))
# Data 1 Intensity should be unchanged, as data1 and data2 equal
self.assertTrue(np.array_equal(data1.Intensity, data1_original.Intensity))
# Data 1 should be updated
self.assertFalse(np.array_equal(data1.Error, data1_original.Error))
self.assertFalse(np.array_equal(data1.Ncount, data1_original.Ncount))
def test_1d_updates_different(self):
"""
Test that adding 1d datasets work as expected when different
"""
data1 = set_dummy_McStasDataBinned_1d()
data1.Intensity *= 2.0
data1.Intensity[10:] *= 2.0
data1.Error *= 1.5
data1.Ncount *= 4.0
data1.metadata.info["Ncount"] *= 4.0
data1_original = copy.deepcopy(data1)
data2 = set_dummy_McStasDataBinned_1d()
data2.Intensity *= 3.0
data2.Error *= 1.5
data2_original = copy.deepcopy(data2)
add_data([data1], [data2])
# Data 2 should not be touched
self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))
# 4 times more weight on data1, intensity 2 and 3
expected_low_intensity = 4/5*2.0 + 1/5*3.0
# 4 times more weight on data1, intensity 4 and 3
expected_high_intensity = 4/5*2.0*2.0 + 1/5*3.0
expected_error = np.sqrt((4 / 5) ** 2 * 1.5 ** 2 + (1 / 5) ** 2 * 1.5 ** 2)
for index in range(len(data1_original.Intensity)):
if index < 10:
self.assertEqual(data1.Intensity[index], expected_low_intensity)
else:
self.assertEqual(data1.Intensity[index], expected_high_intensity)
self.assertEqual(data1.Error[index], expected_error)
self.assertEqual(data1.Ncount[index], 5.0)
self.assertEqual(data1.metadata.info["Ncount"], 40*4+40)
def test_fail(self):
"""
Test that adding datasets fail when they dont have the same monitors
Both 1d and 2d cases included.
"""
data11 = set_dummy_McStasDataBinned_1d()
data11.name = "first monitor"
data11.filename = "first_monitor.dat"
data12 = set_dummy_McStasDataBinned_2d()
data12.name = "second monitor"
data12.filename = "second_monitor.dat"
data13 = set_dummy_McStasDataBinned_1d()
data13.name = "third monitor"
data13.filename = "third_monitor.dat"
data21 = set_dummy_McStasDataBinned_1d()
data21.name = "first monitor"
data21.filename = "first_monitor.dat"
data22 = set_dummy_McStasDataBinned_2d()
data22.name = "second monitor"
data22.filename = "second_monitor.dat"
data23 = set_dummy_McStasDataBinned_1d()
data23.name = "third monitor"
data23.filename = "third_monitor.dat"
# Should succeed, monitors match
add_data([data11, data12, data13], [data21, data22, data23])
# Should succeed, all monitors needed to update first argument present
add_data([data11, data12], [data21, data22, data23])
# Should fail if a monitor is missing
with self.assertRaises(NameError):
add_data([data11, data12, data13], [data21, data22])
data23.name = "different monitor"
# Should fail if name mismatch
with self.assertRaises(NameError):
add_data([data11, data12, data13], [data21, data22, data23])
def test_2d_updates_correctly(self):
"""
Test that adding 1d dataset modifies only the intended dataset
"""
data1 = set_dummy_McStasDataBinned_2d()
data1_original = copy.deepcopy(data1)
data2 = set_dummy_McStasDataBinned_2d()
data2_original = copy.deepcopy(data2)
add_data([data1], [data2])
# Data 2 should not be touched
self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))
# Data 1 Intensity should be unchanged, as data1 and data2 equal
self.assertTrue(np.array_equal(data1.Intensity, data1_original.Intensity))
# Data 1 should be updated
self.assertFalse(np.array_equal(data1.Error, data1_original.Error))
self.assertFalse(np.array_equal(data1.Ncount, data1_original.Ncount))
def test_2d_updates_different(self):
"""
Test that adding 2d datasets work as expected when different
"""
data1 = set_dummy_McStasDataBinned_2d()
data1.Intensity *= 2.0
data1.Intensity[1,:] *= 2.0
data1.Error *= 1.5
data1.Ncount *= 4.0
data1.metadata.info["Ncount"] *= 4.0
data1_original = copy.deepcopy(data1)
data2 = set_dummy_McStasDataBinned_2d()
data2.Intensity *= 3.0
data2.Error *= 1.5
data2_original = copy.deepcopy(data2)
add_data([data1], [data2])
# Data 2 should not be touched
self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity))
self.assertTrue(np.array_equal(data2.Error, data2_original.Error))
self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount))
# 4 times more weight on data1, intensity 2 and 3
expected_low_intensity = 4/5*2.0 + 1/5*3.0
# 4 times more weight on data1, intensity 4 and 3
expected_high_intensity = 4/5*2.0*2.0 + 1/5*3.0
expected_error = np.sqrt((4 / 5) ** 2 * 1.5 ** 2 + (1 / 5) ** 2 * 1.5 ** 2)
for index1 in range(len(data1_original.Intensity[:,0])):
for index2 in range(len(data1_original.Intensity[0, :])):
if index1 == 1:
self.assertEqual(data1.Intensity[index1, index2], expected_high_intensity)
else:
self.assertEqual(data1.Intensity[index1, index2], expected_low_intensity)
self.assertEqual(data1.Error[index1, index2], expected_error)
self.assertEqual(data1.Ncount[index1, index2], 5.0)
self.assertEqual(data1.metadata.info["Ncount"], 40*4+40)
|