1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
"""Simple, brute-force N-Queens solver."""
__author__ = "collinwinter@google.com (Collin Winter)"
# Pure-Python implementation of itertools.permutations().
def permutations(iterable, r=None):
"""permutations(range(3), 2) --> (0,1) (0,2) (1,0) (1,2) (2,0) (2,1)"""
pool = tuple(iterable)
n = len(pool)
if r is None:
r = n
indices = list(range(n))
cycles = list(range(n - r + 1, n + 1))[::-1]
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i + 1 :] + indices[i : i + 1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
# From http://code.activestate.com/recipes/576647/
def n_queens(queen_count):
"""N-Queens solver.
Args:
queen_count: the number of queens to solve for. This is also the
board size.
Yields:
Solutions to the problem. Each yielded value is looks like
(3, 8, 2, 1, 4, ..., 6) where each number is the column position for the
queen, and the index into the tuple indicates the row.
"""
cols = range(queen_count)
for vec in permutations(cols):
if (
queen_count
== len(set(vec[i] + i for i in cols))
== len(set(vec[i] - i for i in cols))
):
yield vec
def bench_n_queens(queen_count):
list(n_queens(queen_count))
def run_benchmark():
bench_n_queens(8)
if __name__ == "__main__":
run_benchmark()
|