1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
import copy
import string
import tempfile
from pathlib import Path
import numpy as np
import meshio
# In general:
# Use values with an infinite decimal representation to test precision.
empty_mesh = meshio.Mesh(np.empty((0, 3)), [])
line_mesh = meshio.Mesh(
np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]) / 3,
[("line", [[0, 1], [0, 2], [0, 3], [1, 2], [2, 3]])],
)
tri_mesh_2d = meshio.Mesh(
np.array([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) / 3,
[("triangle", [[0, 1, 2], [0, 2, 3]])],
)
tri_mesh = meshio.Mesh(
np.array([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0]]) / 3,
[("triangle", [[0, 1, 2], [0, 2, 3]])],
)
line_tri_mesh = meshio.Mesh(line_mesh.points, line_mesh.cells + tri_mesh.cells)
triangle6_mesh = meshio.Mesh(
np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.5, 0.25, 0.0],
[1.25, 0.5, 0.0],
[0.25, 0.75, 0.0],
[2.0, 1.0, 0.0],
[1.5, 1.25, 0.0],
[1.75, 0.25, 0.0],
]
)
/ 3.0,
[("triangle6", [[0, 1, 2, 3, 4, 5], [1, 6, 2, 8, 7, 4]])],
)
quad_mesh = meshio.Mesh(
np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[2.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
]
)
/ 3.0,
[("quad", [[0, 1, 4, 5], [1, 2, 3, 4]])],
)
d = 0.1
quad8_mesh = meshio.Mesh(
np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.5, d, 0.0],
[1 - d, 0.5, 0.0],
[0.5, 1 - d, 0.0],
[d, 0.5, 0.0],
[2.0, 0.0, 0.0],
[2.0, 1.0, 0.0],
[1.5, -d, 0.0],
[2 + d, 0.5, 0.0],
[1.5, 1 + d, 0.0],
]
)
/ 3.0,
[("quad8", [[0, 1, 2, 3, 4, 5, 6, 7], [1, 8, 9, 2, 10, 11, 12, 5]])],
)
tri_quad_mesh = meshio.Mesh(
np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[2.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
]
)
/ 3.0,
[
("triangle", [[0, 1, 4], [0, 4, 5]]),
("quad", [[1, 2, 3, 4]]),
],
)
# same as tri_quad_mesh with reversed cell type order
quad_tri_mesh = meshio.Mesh(
np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[2.0, 0.0, 0.0],
[2.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
]
)
/ 3.0,
[
("quad", [[1, 2, 3, 4]]),
("triangle", [[0, 1, 4], [0, 4, 5]]),
],
)
tet_mesh = meshio.Mesh(
np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.5, 0.5, 0.5],
]
)
/ 3.0,
[("tetra", [[0, 1, 2, 4], [0, 2, 3, 4]])],
)
tet10_mesh = meshio.Mesh(
np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.5, 0.5, 0.5],
#
[0.5, 0.0, 0.1],
[1.0, 0.5, 0.1],
[0.5, 0.5, 0.1],
[0.25, 0.3, 0.25],
[0.8, 0.25, 0.25],
[0.7, 0.7, 0.3],
]
)
/ 3.0,
[("tetra10", [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]])],
)
hex_mesh = meshio.Mesh(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1.0, 0.0, 1.0],
[1.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
],
[("hexahedron", [[0, 1, 2, 3, 4, 5, 6, 7]])],
)
wedge_mesh = meshio.Mesh(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1.0, 0.0, 1.0],
[1.0, 1.0, 1.0],
],
[("wedge", [[0, 1, 2, 3, 4, 5]])],
)
pyramid_mesh = meshio.Mesh(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.5, 0.5, 1.0],
],
[("pyramid", [[0, 1, 2, 3, 4]])],
)
hex20_mesh = meshio.Mesh(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1.0, 0.0, 1.0],
[1.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
#
[0.5, 0.0, 0.0],
[1.0, 0.5, 0.0],
[0.5, 1.0, 0.0],
[0.0, 0.5, 0.0],
#
[0.0, 0.0, 0.5],
[1.0, 0.0, 0.5],
[1.0, 1.0, 0.5],
[0.0, 1.0, 0.5],
#
[0.5, 0.0, 1.0],
[1.0, 0.5, 1.0],
[0.5, 1.0, 1.0],
[0.0, 0.5, 1.0],
],
[("hexahedron20", [np.arange(20)])],
)
polygon_mesh = meshio.Mesh(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[1.5, 0.0, 0.0],
[1.7, 0.5, 0.0],
[1.5, 1.2, 0.0],
[-0.1, 1.1, 0.0],
[-0.5, 1.4, 0.0],
[-0.7, 0.8, 0.0],
[-0.3, -0.1, 0.0],
],
[
("triangle", [[0, 1, 2], [4, 5, 6]]),
("quad", [[0, 1, 2, 3]]),
("polygon5", [[1, 4, 5, 6, 2]]),
("polygon6", [[0, 3, 7, 8, 9, 10], [1, 3, 7, 8, 9, 10]]),
],
)
polyhedron_mesh = meshio.Mesh(
[ # Two layers of a unit square
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[1.0, 0.0, 1.0],
[1.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
],
[ # Split the cube into tets and pyramids.
(
"polyhedron4",
[
[
[1, 2, 5],
[1, 2, 7],
[1, 5, 7],
[2, 5, 7],
],
[
[2, 5, 6],
[2, 6, 7],
[2, 5, 7],
[5, 6, 7],
],
],
),
(
"polyhedron5",
[
[
# np.asarray on this causes a numpy warning
# ```
# VisibleDeprecationWarning: Creating an ndarray from ragged nested
# sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays
# with different lengths or shapes) is deprecated. If you meant to
# do this, you must specify 'dtype=object' when creating the
# ndarray.
# ```
# TODO come up with a better data structure for polyhedra
[0, 1, 2, 3], # pyramid base is a rectangle
[0, 1, 7],
[1, 2, 7],
[2, 3, 7],
[3, 0, 7],
],
[
[0, 1, 5], # pyramid base split in two triangles
[0, 4, 5],
[0, 1, 7],
[1, 5, 7],
[5, 4, 7],
[0, 4, 7],
],
],
),
],
)
def add_point_data(mesh, dim, num_tags=2, seed=0, dtype=float):
np.random.seed(seed)
mesh2 = copy.deepcopy(mesh)
shape = (len(mesh.points),) if dim == 1 else (len(mesh.points), dim)
data = [(100 * np.random.rand(*shape)).astype(dtype) for _ in range(num_tags)]
mesh2.point_data = {string.ascii_lowercase[k]: d for k, d in enumerate(data)}
return mesh2
def add_cell_data(mesh, specs):
mesh2 = copy.deepcopy(mesh)
np.random.seed(0)
mesh2.cell_data = {
name: [
(100 * np.random.rand(*((len(cells),) + shape))).astype(dtype)
for _, cells in mesh.cells
]
for name, shape, dtype in specs
}
# Keep cell-data from the original mesh. This is needed to preserve
# face-cell relations for polyhedral meshes.
for key, val in mesh.cell_data.items():
mesh2.cell_data[key] = val
return mesh2
def add_field_data(mesh, value, dtype):
mesh2 = copy.deepcopy(mesh)
mesh2.field_data = {"a": np.array(value, dtype=dtype)}
return mesh2
def add_point_sets(mesh):
mesh2 = copy.deepcopy(mesh)
mesh2.point_sets = {"fixed": np.array([1, 2])}
return mesh2
def add_cell_sets(mesh):
mesh2 = copy.deepcopy(mesh)
assert len(mesh.cells) == 1
n = len(mesh.cells[0])
mesh2.cell_sets = {
"grain0": [np.array([0])],
"grain1": [np.arange(1, n)],
}
return mesh2
def write_read(writer, reader, input_mesh, atol, extension=".dat"):
"""Write and read a file, and make sure the data is the same as before."""
in_mesh = copy.deepcopy(input_mesh)
with tempfile.TemporaryDirectory() as temp_dir:
p = Path(temp_dir) / ("test" + extension)
writer(p, input_mesh)
mesh = reader(p)
# Make sure the output is writeable
assert mesh.points.flags["WRITEABLE"]
for cells in input_mesh.cells:
if isinstance(cells.data, np.ndarray):
assert cells.data.flags["WRITEABLE"]
else:
# This is assumed to be a polyhedron
for cell in cells.data:
for face in cell:
assert face.flags["WRITEABLE"]
# assert that the input mesh hasn't changed at all
assert np.allclose(in_mesh.points, input_mesh.points, atol=atol, rtol=0.0)
# Numpy's array_equal is too strict here, cf.
# <https://mail.scipy.org/pipermail/numpy-discussion/2015-December/074410.html>.
# Use allclose.
if in_mesh.points.shape[0] == 0:
assert mesh.points.shape[0] == 0
else:
n = in_mesh.points.shape[1]
assert np.allclose(in_mesh.points, mesh.points[:, :n], atol=atol, rtol=0.0)
# To avoid errors from sorted (below), specify the key as first cell type then index
# of the first point of the first cell. This may still lead to comparison of what
# should be different blocks, but chances seem low.
def cell_sorter(cell):
if cell.type.startswith("polyhedron"):
# Polyhedra blocks should be well enough distinguished by their type
return cell.type
else:
return (cell.type, cell.data[0, 0])
# to make sure we are testing the same type of cells we sort the list
for cells0, cells1 in zip(
sorted(input_mesh.cells, key=cell_sorter), sorted(mesh.cells, key=cell_sorter)
):
assert cells0.type == cells1.type, f"{cells0.type} != {cells1.type}"
if cells0.type[:10] == "polyhedron":
# Special treatment of polyhedron cells
# Data is a list (one item per cell) of numpy arrays
for c_in, c_out in zip(cells0.data, cells1.data):
for face_in, face_out in zip(c_in, c_out):
assert np.allclose(face_in, face_out, atol=atol, rtol=0.0)
else:
assert np.array_equal(cells0.data, cells1.data)
for key in input_mesh.point_data.keys():
assert np.allclose(
input_mesh.point_data[key], mesh.point_data[key], atol=atol, rtol=0.0
)
for name, cell_type_data in input_mesh.cell_data.items():
for d0, d1 in zip(cell_type_data, mesh.cell_data[name]):
# assert d0.dtype == d1.dtype, (d0.dtype, d1.dtype)
assert np.allclose(d0, d1, atol=atol, rtol=0.0)
print()
print("helpers:")
print(input_mesh.field_data)
print()
print(mesh.field_data)
for name, data in input_mesh.field_data.items():
if isinstance(data, list):
assert data == mesh.field_data[name]
else:
assert np.allclose(data, mesh.field_data[name], atol=atol, rtol=0.0)
# Test of cell sets (assumed to be a list of numpy arrays),
for name, data in input_mesh.cell_sets.items():
# Skip the test if the key is not in the read cell set
if name not in mesh.cell_sets.keys():
continue
data2 = mesh.cell_sets[name]
for var1, var2 in zip(data, data2):
assert np.allclose(var1, var2, atol=atol, rtol=0.0)
def generic_io(filename):
with tempfile.TemporaryDirectory() as temp_dir:
filepath = Path(temp_dir) / filename
meshio.write_points_cells(filepath, tri_mesh.points, tri_mesh.cells)
out_mesh = meshio.read(filepath)
assert (abs(out_mesh.points - tri_mesh.points) < 1.0e-15).all()
for c0, c1 in zip(tri_mesh.cells, out_mesh.cells):
assert c0.type == c1.type
assert (c0.data == c1.data).all()
|