1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
<p align="center">
<a href="https://github.com/nschloe/meshio"><img alt="meshio" src="https://nschloe.github.io/meshio/logo-with-text.svg" width="60%"></a>
<p align="center">I/O for mesh files.</p>
</p>
[](https://pypi.org/project/meshio/)
[](https://anaconda.org/conda-forge/meshio/)
[](https://repology.org/project/python:meshio/versions)
[](https://pypi.org/project/meshio/)
[](https://doi.org/10.5281/zenodo.1173115)
[](https://github.com/nschloe/meshio)
[](https://pepy.tech/project/meshio)
<!--[](https://pypistats.org/packages/meshio)-->
[](https://discord.gg/Z6DMsJh4Hr)
[](https://github.com/nschloe/meshio/actions?query=workflow%3Aci)
[](https://app.codecov.io/gh/nschloe/meshio)
[](https://lgtm.com/projects/g/nschloe/meshio)
[](https://github.com/psf/black)
There are various mesh formats available for representing unstructured meshes.
meshio can read and write all of the following and smoothly converts between them:
> [Abaqus](http://abaqus.software.polimi.it/v6.14/index.html) (`.inp`),
> ANSYS msh (`.msh`),
> [AVS-UCD](https://lanl.github.io/LaGriT/pages/docs/read_avs.html) (`.avs`),
> [CGNS](https://cgns.github.io/) (`.cgns`),
> [DOLFIN XML](https://manpages.ubuntu.com/manpages/jammy/en/man1/dolfin-convert.1.html) (`.xml`),
> [Exodus](https://nschloe.github.io/meshio/exodus.pdf) (`.e`, `.exo`),
> [FLAC3D](https://www.itascacg.com/software/flac3d) (`.f3grid`),
> [H5M](https://www.mcs.anl.gov/~fathom/moab-docs/h5mmain.html) (`.h5m`),
> [Kratos/MDPA](https://github.com/KratosMultiphysics/Kratos/wiki/Input-data) (`.mdpa`),
> [Medit](https://people.sc.fsu.edu/~jburkardt/data/medit/medit.html) (`.mesh`, `.meshb`),
> [MED/Salome](https://docs.salome-platform.org/latest/dev/MEDCoupling/developer/med-file.html) (`.med`),
> [Nastran](https://help.autodesk.com/view/NSTRN/2019/ENU/?guid=GUID-42B54ACB-FBE3-47CA-B8FE-475E7AD91A00) (bulk data, `.bdf`, `.fem`, `.nas`),
> [Netgen](https://github.com/ngsolve/netgen) (`.vol`, `.vol.gz`),
> [Neuroglancer precomputed format](https://github.com/google/neuroglancer/tree/master/src/neuroglancer/datasource/precomputed#mesh-representation-of-segmented-object-surfaces),
> [Gmsh](https://gmsh.info/doc/texinfo/gmsh.html#File-formats) (format versions 2.2, 4.0, and 4.1, `.msh`),
> [OBJ](https://en.wikipedia.org/wiki/Wavefront_.obj_file) (`.obj`),
> [OFF](https://segeval.cs.princeton.edu/public/off_format.html) (`.off`),
> [PERMAS](https://www.intes.de) (`.post`, `.post.gz`, `.dato`, `.dato.gz`),
> [PLY](<https://en.wikipedia.org/wiki/PLY_(file_format)>) (`.ply`),
> [STL](<https://en.wikipedia.org/wiki/STL_(file_format)>) (`.stl`),
> [Tecplot .dat](http://paulbourke.net/dataformats/tp/),
> [TetGen .node/.ele](https://wias-berlin.de/software/tetgen/fformats.html),
> [SVG](https://www.w3.org/TR/SVG/) (2D output only) (`.svg`),
> [SU2](https://su2code.github.io/docs_v7/Mesh-File/) (`.su2`),
> [UGRID](https://www.simcenter.msstate.edu/software/documentation/ug_io/3d_grid_file_type_ugrid.html) (`.ugrid`),
> [VTK](https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf) (`.vtk`),
> [VTU](https://vtk.org/Wiki/VTK_XML_Formats) (`.vtu`),
> [WKT](https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry) ([TIN](https://en.wikipedia.org/wiki/Triangulated_irregular_network)) (`.wkt`),
> [XDMF](https://xdmf.org/index.php/XDMF_Model_and_Format) (`.xdmf`, `.xmf`).
([Here's a little survey](https://forms.gle/PSeNb3N3gv3wbEus8) on which formats are actually
used.)
Install with one of
```
pip install meshio[all]
conda install -c conda-forge meshio
```
(`[all]` pulls in all optional dependencies. By default, meshio only uses numpy.)
You can then use the command-line tool
<!--pytest-codeblocks:skip-->
```sh
meshio convert input.msh output.vtk # convert between two formats
meshio info input.xdmf # show some info about the mesh
meshio compress input.vtu # compress the mesh file
meshio decompress input.vtu # decompress the mesh file
meshio binary input.msh # convert to binary format
meshio ascii input.msh # convert to ASCII format
```
with any of the supported formats.
In Python, simply do
<!--pytest-codeblocks:skip-->
```python
import meshio
mesh = meshio.read(
filename, # string, os.PathLike, or a buffer/open file
# file_format="stl", # optional if filename is a path; inferred from extension
# see meshio-convert -h for all possible formats
)
# mesh.points, mesh.cells, mesh.cells_dict, ...
# mesh.vtk.read() is also possible
```
to read a mesh. To write, do
```python
import meshio
# two triangles and one quad
points = [
[0.0, 0.0],
[1.0, 0.0],
[0.0, 1.0],
[1.0, 1.0],
[2.0, 0.0],
[2.0, 1.0],
]
cells = [
("triangle", [[0, 1, 2], [1, 3, 2]]),
("quad", [[1, 4, 5, 3]]),
]
mesh = meshio.Mesh(
points,
cells,
# Optionally provide extra data on points, cells, etc.
point_data={"T": [0.3, -1.2, 0.5, 0.7, 0.0, -3.0]},
# Each item in cell data must match the cells array
cell_data={"a": [[0.1, 0.2], [0.4]]},
)
mesh.write(
"foo.vtk", # str, os.PathLike, or buffer/open file
# file_format="vtk", # optional if first argument is a path; inferred from extension
)
# Alternative with the same options
meshio.write_points_cells("foo.vtk", points, cells)
```
For both input and output, you can optionally specify the exact `file_format`
(in case you would like to enforce ASCII over binary VTK, for example).
#### Time series
The [XDMF format](https://xdmf.org/index.php/XDMF_Model_and_Format) supports
time series with a shared mesh. You can write times series data using meshio
with
<!--pytest-codeblocks:skip-->
```python
with meshio.xdmf.TimeSeriesWriter(filename) as writer:
writer.write_points_cells(points, cells)
for t in [0.0, 0.1, 0.21]:
writer.write_data(t, point_data={"phi": data})
```
and read it with
<!--pytest-codeblocks:skip-->
```python
with meshio.xdmf.TimeSeriesReader(filename) as reader:
points, cells = reader.read_points_cells()
for k in range(reader.num_steps):
t, point_data, cell_data = reader.read_data(k)
```
### ParaView plugin
<img alt="gmsh paraview" src="https://nschloe.github.io/meshio/gmsh-paraview.png" width="60%">
*A Gmsh file opened with ParaView.*
If you have downloaded a binary version of ParaView, you may proceed as follows.
- Install meshio for the Python major version that ParaView uses (check `pvpython --version`)
- Open ParaView
- Find the file `paraview-meshio-plugin.py` of your meshio installation (on Linux:
`~/.local/share/paraview-5.9/plugins/`) and load it under _Tools / Manage Plugins / Load New_
- _Optional:_ Activate _Auto Load_
You can now open all meshio-supported files in ParaView.
### Performance comparison
The comparisons here are for a triangular mesh with about 900k points and 1.8M
triangles. The red lines mark the size of the mesh in memory.
#### File sizes
<img alt="file size" src="https://nschloe.github.io/meshio/filesizes.svg" width="60%">
#### I/O speed
<img alt="performance" src="https://nschloe.github.io/meshio/performance.svg" width="90%">
#### Maximum memory usage
<img alt="memory usage" src="https://nschloe.github.io/meshio/memory.svg" width="90%">
### Installation
meshio is [available from the Python Package Index](https://pypi.org/project/meshio/),
so simply run
```
pip install meshio
```
to install.
Additional dependencies (`netcdf4`, `h5py`) are required for some of the output formats
and can be pulled in by
```
pip install meshio[all]
```
You can also install meshio from [Anaconda](https://anaconda.org/conda-forge/meshio):
```
conda install -c conda-forge meshio
```
### Testing
To run the meshio unit tests, check out this repository and type
```
tox
```
### License
meshio is published under the [MIT license](https://en.wikipedia.org/wiki/MIT_License).
|