1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
import pathlib
import meshio
import numpy as np
import pytest
import meshplex
from .helpers import assert_mesh_consistency, compute_all_entities
this_dir = pathlib.Path(__file__).resolve().parent
def test_flip_simple():
# 3 3
# A A
# /|\ / \
# 1/ | \4 1/ 1 \4
# / | \ / \
# 0/ 0 3 \2 ==> 0/___3___\2
# \ | 1 / \ /
# \ | / \ /
# 0\ | /2 0\ 0 /2
# \|/ \ /
# V V
# 1 1
#
points = np.array([[-0.1, 0.0], [0.0, -1.0], [0.1, 0.0], [0.0, 1.1]])
cells = np.array([[0, 1, 3], [1, 2, 3]])
mesh = meshplex.MeshTri(points, cells)
mesh.create_facets()
assert not mesh.is_delaunay
assert mesh.num_delaunay_violations == 1
assert np.array_equal(
mesh.edges["points"], [[0, 1], [0, 3], [1, 2], [1, 3], [2, 3]]
)
assert np.array_equal(mesh.cells("edges"), [[3, 1, 0], [4, 3, 2]])
assert_mesh_consistency(mesh)
# mesh.show()
num_flips = mesh.flip_until_delaunay()
assert num_flips == 1
assert_mesh_consistency(mesh)
assert mesh.num_delaunay_violations == 0
assert np.array_equal(
mesh.edges["points"], [[0, 1], [0, 3], [1, 2], [0, 2], [2, 3]]
)
assert np.array_equal(mesh.cells("points"), [[0, 1, 2], [0, 2, 3]])
assert np.array_equal(mesh.cells("edges"), [[2, 3, 0], [4, 1, 3]])
def test_flip_simple_negative_orientation():
# 3 3
# A A
# /|\ / \
# 1/ | \4 1/ 1 \4
# / | \ / \
# 0/ 0 3 \2 ==> 0/___3___\2
# \ | 1 / \ /
# \ | / \ /
# 0\ | /2 0\ 0 /2
# \|/ \ /
# V V
# 1 1
#
points = np.array([[-0.1, 0.0], [0.0, -1.0], [0.1, 0.0], [0.0, 1.1]])
cells = np.array([[0, 3, 1], [1, 3, 2]])
mesh = meshplex.MeshTri(points, cells)
mesh.create_facets()
assert mesh.num_delaunay_violations == 1
assert np.array_equal(
mesh.edges["points"], [[0, 1], [0, 3], [1, 2], [1, 3], [2, 3]]
)
assert np.array_equal(mesh.cells("edges"), [[3, 0, 1], [4, 2, 3]])
assert_mesh_consistency(mesh)
# mesh.show()
mesh.flip_until_delaunay()
assert_mesh_consistency(mesh)
assert mesh.num_delaunay_violations == 0
assert np.array_equal(
mesh.edges["points"], [[0, 1], [0, 3], [1, 2], [0, 2], [2, 3]]
)
assert np.array_equal(mesh.cells("points"), [[0, 3, 2], [0, 2, 1]])
assert np.array_equal(mesh.cells("edges"), [[4, 3, 1], [2, 0, 3]])
def test_flip_simple_opposite_orientation():
# 3 3
# A A
# /|\ / \
# 1/ | \4 1/ 1 \4
# / | \ / \
# 0/ 0 3 \2 ==> 0/___3___\2
# \ | 1 / \ /
# \ | / \ /
# 0\ | /2 0\ 0 /2
# \|/ \ /
# V V
# 1 1
#
points = np.array([[-0.1, 0.0], [0.0, -1.0], [0.1, 0.0], [0.0, 1.1]])
cells = np.array([[0, 1, 3], [1, 3, 2]])
mesh = meshplex.MeshTri(points, cells)
mesh.create_facets()
assert mesh.num_delaunay_violations == 1
assert np.array_equal(
mesh.edges["points"], [[0, 1], [0, 3], [1, 2], [1, 3], [2, 3]]
)
assert np.array_equal(mesh.cells("edges"), [[3, 1, 0], [4, 2, 3]])
assert_mesh_consistency(mesh)
# mesh.show()
mesh.flip_until_delaunay()
assert_mesh_consistency(mesh)
assert mesh.num_delaunay_violations == 0
assert np.array_equal(
mesh.edges["points"], [[0, 1], [0, 3], [1, 2], [0, 2], [2, 3]]
)
assert np.array_equal(mesh.cells("points"), [[0, 1, 2], [0, 2, 3]])
assert np.array_equal(mesh.cells("edges"), [[2, 3, 0], [4, 1, 3]])
def test_flip_delaunay_near_boundary():
points = np.array([[0.0, +0.0], [0.5, -0.1], [1.0, +0.0], [0.5, +0.1]])
cells = np.array([[0, 1, 2], [0, 2, 3]])
mesh = meshplex.MeshTri(points, cells)
mesh.create_facets()
assert mesh.num_delaunay_violations == 1
assert np.array_equal(mesh.cells("points"), [[0, 1, 2], [0, 2, 3]])
assert np.array_equal(mesh.cells("edges"), [[3, 1, 0], [4, 2, 1]])
mesh.flip_until_delaunay()
assert_mesh_consistency(mesh)
assert mesh.num_delaunay_violations == 0
assert np.array_equal(mesh.cells("points"), [[1, 2, 3], [1, 3, 0]])
assert np.array_equal(mesh.cells("edges"), [[4, 1, 3], [2, 0, 1]])
def test_flip_same_edge_twice():
points = np.array([[0.0, +0.0], [0.5, -0.1], [1.0, +0.0], [0.5, +0.1]])
cells = np.array([[0, 1, 2], [0, 2, 3]])
mesh = meshplex.MeshTri(points, cells)
assert mesh.num_delaunay_violations == 1
mesh.flip_until_delaunay()
assert mesh.num_delaunay_violations == 0
mesh.show(
mark_cells=mesh.is_boundary_cell,
show_point_numbers=True,
show_edge_numbers=True,
show_cell_numbers=True,
)
assert_mesh_consistency(mesh)
new_points = np.array([[0.0, +0.0], [0.1, -0.5], [0.2, +0.0], [0.1, +0.5]])
mesh.points = new_points
assert mesh.num_delaunay_violations == 1
mesh.flip_until_delaunay()
assert mesh.num_delaunay_violations == 0
mesh.show()
# mesh.plot()
def test_flip_two_edges():
alpha = np.array([1.0, 3.0, 5.0, 7.0, 9.0, 11.0]) / 6.0 * np.pi
# Make the mesh slightly asymmetric to get the same flips on every architecture; see
# <https://github.com/nschloe/meshplex/issues/78>.
R = [0.95, 1.0, 0.9, 1.0, 1.2, 1.0]
points = np.array([[r * np.cos(a), r * np.sin(a), 0.0] for a, r in zip(alpha, R)])
cells = np.array([[1, 3, 5], [0, 1, 5], [1, 2, 3], [3, 4, 5]])
mesh = meshplex.MeshTri(points, cells)
assert mesh.num_delaunay_violations == 2
mesh.flip_until_delaunay()
assert mesh.num_delaunay_violations == 0
mesh.show(show_point_numbers=True)
assert np.array_equal(
mesh.cells("points"), [[2, 5, 0], [2, 0, 1], [5, 2, 3], [3, 4, 5]]
)
def test_flip_delaunay_near_boundary_preserve_boundary_count():
# This test is to make sure meshplex preserves the boundary point count.
points = np.array(
[
[+0.0, +0.0],
[+0.5, -0.5],
[+0.5, +0.5],
[+0.0, +0.6],
[-0.5, +0.5],
[-0.5, -0.5],
]
)
cells = np.array([[0, 1, 2], [0, 2, 4], [0, 4, 5], [0, 5, 1], [2, 3, 4]])
mesh = meshplex.MeshTri(points, cells)
mesh.create_facets()
assert mesh.num_delaunay_violations == 1
is_boundary_point_ref = [False, True, True, True, True, True]
assert np.array_equal(mesh.is_boundary_point, is_boundary_point_ref)
mesh.flip_until_delaunay()
assert np.array_equal(mesh.is_boundary_point, is_boundary_point_ref)
def test_flip_orientation():
points = np.array([[0.0, +0.0], [0.5, -0.1], [1.0, +0.0], [0.5, +0.1]])
# preserve positive orientation
cells = np.array([[0, 1, 2], [0, 2, 3]])
mesh = meshplex.MeshTri(points, cells)
assert np.all(mesh.signed_cell_volumes > 0.0)
mesh.flip_until_delaunay()
assert np.all(mesh.signed_cell_volumes > 0.0)
# also preserve negative orientation
cells = np.array([[0, 2, 1], [0, 3, 2]])
mesh = meshplex.MeshTri(points, cells)
assert np.all(mesh.signed_cell_volumes < 0.0)
mesh.flip_until_delaunay()
assert np.all(mesh.signed_cell_volumes < 0.0)
def test_flip_infinite():
"""In rare cases, it can happen that the ce-ratio of an edge is negative (up to
machine precision, -2.13e-15 or something like that), an edge flip is done, and the
ce-ratio of the resulting edge is again negative. The flip_until_delaunay() method
would continue indefinitely. This test replicates such an edge case."""
a = 3.9375644347017862e02
points = np.array([[205.0, a], [185.0, a], [330.0, 380.0], [60.0, 380.0]])
cells = [[0, 1, 2], [1, 2, 3]]
mesh = meshplex.MeshTri(points, cells)
num_flips = mesh.flip_until_delaunay(tol=1.0e-13)
assert num_flips == 0
def test_flip_interior_to_boundary():
# __________ __________
# |\__ A |\__ A
# | \__ /|\ | \__ / \
# | \/ | \ ==> | \/___\
# | __/\ | / | __/\ /
# | __/ \|/ | __/ \ /
# |/________V |/________V
#
points = np.array(
[[0.0, 0.0], [1.0, 0.0], [1.1, 0.5], [1.0, 1.0], [0.0, 1.0], [0.9, 0.5]]
)
cells = np.array([[0, 1, 5], [1, 3, 5], [1, 2, 3], [3, 4, 5], [0, 5, 4]])
mesh = meshplex.MeshTri(points, cells)
compute_all_entities(mesh)
# mesh.show(mark_cells=mesh.is_boundary_cell)
mesh.flip_until_delaunay()
assert_mesh_consistency(mesh)
# mesh.show(mark_cells=mesh.is_boundary_cell)
assert np.all(mesh.is_boundary_cell)
def test_flip_delaunay():
rng = np.random.default_rng(123)
mesh0 = meshio.read(this_dir / ".." / "meshes" / "pacman.vtu")
mesh0.points[:, :2] += 1.0e-1 * rng.random(mesh0.points[:, :2].shape)
mesh0 = meshplex.MeshTri(mesh0.points[:, :2], mesh0.get_cells_type("triangle"))
compute_all_entities(mesh0)
assert np.all(mesh0.signed_cell_volumes > 0)
assert mesh0.num_delaunay_violations == 5
mesh0.flip_until_delaunay()
assert mesh0.num_delaunay_violations == 0
assert_mesh_consistency(mesh0)
# mesh0.show(mark_cells=mesh0.is_boundary_cell)
# We don't need to check for exact equality with a replicated mesh. The order of the
# edges will be different, for example. Just make sure the mesh is consistent.
# mesh1 = meshplex.MeshTri(mesh0.points.copy(), mesh0.cells("points").copy())
# mesh1.create_facets()
# assert_mesh_equality(mesh0, mesh1)
def test_flip_into_existing_edge():
"""For surface meshes, flips can lead to duplicate cells. For context, see
<https://github.com/nschloe/optimesh/issues/71#issuecomment-785699560>.
"""
points = np.array(
[
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[0.5, 0.3, 0.3],
[0.5, -0.3, 0.3],
]
)
cells = np.array(
[
[1, 2, 0],
[2, 3, 0],
[3, 1, 0],
]
)
mesh = meshplex.MeshTri(points, cells)
with pytest.warns(UserWarning):
n = mesh.flip_until_delaunay()
# no flips performed
assert n == 0
def test_doubled_cell():
# Two congruent cells. One can think of it as a deflated, coarse ball.
points = np.array(
[
[0.0, 0.0],
[1.0, 0.0],
[0.5, 0.4],
]
)
cells = np.array([[0, 1, 2], [0, 1, 2]])
mesh = meshplex.MeshTri(points, cells)
num_flips = mesh.flip_until_delaunay()
assert num_flips == 1
ref = [[2, 0, 2], [2, 2, 1]]
assert np.all(mesh.cells("points") == ref)
def test_negative_after_flip():
points = [[0.0, 0.0], [3.0, 0.0], [1.14960653, 0.03], [1.85039347, 0.03]]
cells = [
[0, 3, 2],
[0, 1, 3],
]
mesh0 = meshplex.MeshTri(points, cells)
with pytest.warns(UserWarning):
mesh0.flip_until_delaunay()
|