File: README.rst

package info (click to toggle)
python-mimeparse 1.6.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 112 kB
  • sloc: python: 170; makefile: 6
file content (63 lines) | stat: -rw-r--r-- 1,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Python-MimeParse
================

.. image:: https://travis-ci.org/dbtsai/python-mimeparse.svg?branch=master
   :target: https://travis-ci.org/dbtsai/python-mimeparse

This module provides basic functions for handling mime-types. It can
handle matching mime-types against a list of media-ranges. See section
5.3.2 of the HTTP 1.1 Semantics and Content specification [RFC 7231] for
a complete explanation: https://tools.ietf.org/html/rfc7231#section-5.3.2

Installation
------------

Use **pip**:

.. code-block:: sh

    $ pip install python-mimeparse

It supports Python 2.7 - 3.5 and PyPy.

Functions
---------

**parse_mime_type()**

Parses a mime-type into its component parts.

**parse_media_range()**

Media-ranges are mime-types with wild-cards and a "q" quality parameter.

**quality()**

Determines the quality ("q") of a mime-type when compared against a list of
media-ranges.

**quality_parsed()**

Just like ``quality()`` except the second parameter must be pre-parsed.

**best_match()**

Choose the mime-type with the highest quality ("q") from a list of candidates.

Testing
-------

Run the tests by typing: ``python mimeparse_test.py``. The tests require Python 2.6.

To make sure that the package works in all the supported environments, you can
run **tox** tests:

.. code-block:: sh

    $ pip install tox
    $ tox

The format of the JSON test data file is as follows: A top-level JSON object
which has a key for each of the functions to be tested. The value corresponding
to that key is a list of tests. Each test contains: the argument or arguments
to the function being tested, the expected results and an optional description.