1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
.. title:: MNE
.. include:: links.inc
.. raw:: html
<div class="container"><div class="row">
<div class="col-md-8"><div style="text-align: center; height: 270px">
<span style="display: inline-block; height: 100%; vertical-align: middle"></span>
<a href="index.html"><img src="_static/mne_logo.png" border="0" alt="MNE" style="vertical-align: middle"></a>
</div></div>
<div class="col-md-4"><div style="float: left">
<a href="index.html"><img src="_static/institutions.png"" border="0" alt="Institutions"/></a>
</div></div>
</div></div>
.. raw:: html
<div class="container-fluid">
<div class="row">
<div class="col-md-8">
<br>
MNE is a community-driven software package designed for **processing
electroencephalography (EEG) and magnetoencephalography (MEG) data**
providing comprehensive tools and workflows for
(:ref:`among other things <what_can_you_do>`):
1. Preprocessing and denoising
2. Source estimation
3. Time–frequency analysis
4. Statistical testing
5. Estimation of functional connectivity
6. Applying machine learning algorithms
7. Visualization of sensor- and source-space data
MNE includes a comprehensive Python_ package supplemented by tools compiled
from C code for the LINUX and Mac OSX operating systems, as well as a MATLAB toolbox.
**From raw data to source estimates in about 30 lines of code** (Try it :ref:`by installing it <getting_started>` or `in an experimental online demo <http://mybinder.org/repo/mne-tools/mne-binder/notebooks/plot_introduction.ipynb>`_!):
.. code:: python
>>> import mne # doctest: +SKIP
>>> raw = mne.io.read_raw_fif('raw.fif', preload=True) # load data # doctest: +SKIP
>>> raw.info['bads'] = ['MEG 2443', 'EEG 053'] # mark bad channels # doctest: +SKIP
>>> raw.filter(l_freq=None, h_freq=40.0) # low-pass filter data # doctest: +SKIP
>>> # Extract epochs and save them:
>>> picks = mne.pick_types(raw.info, meg=True, eeg=True, eog=True, # doctest: +SKIP
>>> exclude='bads') # doctest: +SKIP
>>> events = mne.find_events(raw) # doctest: +SKIP
>>> reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) # doctest: +SKIP
>>> epochs = mne.Epochs(raw, events, event_id=1, tmin=-0.2, tmax=0.5, # doctest: +SKIP
>>> proj=True, picks=picks, baseline=(None, 0), # doctest: +SKIP
>>> preload=True, reject=reject) # doctest: +SKIP
>>> # Compute evoked response and noise covariance
>>> evoked = epochs.average() # doctest: +SKIP
>>> cov = mne.compute_covariance(epochs, tmax=0) # doctest: +SKIP
>>> evoked.plot() # plot evoked # doctest: +SKIP
>>> # Compute inverse operator:
>>> fwd_fname = 'sample_audvis−meg−eeg−oct−6−fwd.fif' # doctest: +SKIP
>>> fwd = mne.read_forward_solution(fwd_fname, surf_ori=True) # doctest: +SKIP
>>> inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd, # doctest: +SKIP
>>> cov, loose=0.2) # doctest: +SKIP
>>> # Compute inverse solution:
>>> stc = mne.minimum_norm.apply_inverse(evoked, inv, lambda2=1./9., # doctest: +SKIP
>>> method='dSPM') # doctest: +SKIP
>>> # Morph it to average brain for group study and plot it
>>> stc_avg = mne.morph_data('sample', 'fsaverage', stc, 5, smooth=5) # doctest: +SKIP
>>> stc_avg.plot() # doctest: +SKIP
MNE development is driven by :ref:`extensive contributions from the community <whats_new>`.
Direct financial support for the project has been provided by:
- (US) National Institute of Biomedical Imaging and Bioengineering (NIBIB)
grants 5R01EB009048 and P41EB015896 (Center for Functional Neuroimaging
Technologies)
- (US) NSF awards 0958669 and 1042134.
- (US) NCRR *Center for Functional Neuroimaging Technologies* P41RR14075-06
- (US) NIH grants 1R01EB009048-01, R01 EB006385-A101, 1R01 HD40712-A1, 1R01
NS44319-01, and 2R01 NS37462-05
- (US) Department of Energy Award Number DE-FG02-99ER62764 to The MIND
Institute.
- (FR) IDEX Paris-Saclay, ANR-11-IDEX-0003-02, via the
`Center for Data Science <http://www.datascience-paris-saclay.fr/>`_.
- (FR) European Research Council (ERC) Starting Grant (ERC-YStG-263584).
- (FR) French National Research Agency (ANR-14-NEUC-0002-01).
- (FR) European Research Council (ERC) Starting Grant (ERC-YStG-676943).
- Amazon Web Services - Research Grant issued to Denis A. Engemann
.. raw:: html
<div class="col-md-8">
<script type="text/javascript" src="http://www.ohloh.net/p/586838/widgets/project_basic_stats.js"></script>
</div>
.. raw:: html
</div>
<div class="col-md-4">
<h2>Documentation</h2>
.. toctree::
:maxdepth: 1
getting_started
tutorials
auto_examples/index
faq
contributing
.. toctree::
:maxdepth: 1
python_reference
manual/index
whats_new
.. toctree::
:maxdepth: 1
cite
references
cited
.. raw:: html
<h2>Community</h2>
* Analysis talk: join the `MNE mailing list`_
* `Feature requests and bug reports on GitHub <https://github.com/mne-tools/mne-python/issues/>`_
* `Chat with developers on Gitter <https://gitter.im/mne-tools/mne-python>`_
.. raw:: html
<h2>Versions</h2>
<ul>
<li><a href=http://martinos.org/mne/stable>Stable</a></li>
<li><a href=http://martinos.org/mne/dev>Development</a></li>
</ul>
<div style="float: left; padding: 10px; width: 100%;">
<a class="twitter-timeline" href="https://twitter.com/mne_python" data-widget-id="317730454184804352">Tweets by @mne_python</a>
</div>
</div>
</div>
</div>
|