File: index.rst

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (152 lines) | stat: -rw-r--r-- 5,685 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
.. title:: MNE

.. include:: links.inc

.. raw:: html

    <div class="container"><div class="row">
    <div class="col-md-8"><div style="text-align: center; height: 270px">
    <span style="display: inline-block; height: 100%; vertical-align: middle"></span>
    <a href="index.html"><img src="_static/mne_logo.png" border="0" alt="MNE" style="vertical-align: middle"></a>
    </div></div>
    <div class="col-md-4"><div style="float: left">
    <a href="index.html"><img src="_static/institutions.png"" border="0" alt="Institutions"/></a>
    </div></div>
    </div></div>

.. raw:: html

   <div class="container-fluid">
   <div class="row">
   <div class="col-md-8">
   <br>

MNE is a community-driven software package designed for **processing
electroencephalography (EEG) and magnetoencephalography (MEG) data**
providing comprehensive tools and workflows for
(:ref:`among other things <what_can_you_do>`):

1. Preprocessing and denoising
2. Source estimation
3. Time–frequency analysis
4. Statistical testing
5. Estimation of functional connectivity
6. Applying machine learning algorithms
7. Visualization of sensor- and source-space data

MNE includes a comprehensive Python_ package supplemented by tools compiled
from C code for the LINUX and Mac OSX operating systems, as well as a MATLAB toolbox.

**From raw data to source estimates in about 30 lines of code** (Try it :ref:`by installing it <getting_started>` or `in an experimental online demo <http://mybinder.org/repo/mne-tools/mne-binder/notebooks/plot_introduction.ipynb>`_!):

.. code:: python

    >>> import mne  # doctest: +SKIP
    >>> raw = mne.io.read_raw_fif('raw.fif', preload=True)  # load data  # doctest: +SKIP
    >>> raw.info['bads'] = ['MEG 2443', 'EEG 053']  # mark bad channels  # doctest: +SKIP
    >>> raw.filter(l_freq=None, h_freq=40.0)  # low-pass filter data  # doctest: +SKIP
    >>> # Extract epochs and save them:
    >>> picks = mne.pick_types(raw.info, meg=True, eeg=True, eog=True,  # doctest: +SKIP
    >>>                        exclude='bads')  # doctest: +SKIP
    >>> events = mne.find_events(raw)  # doctest: +SKIP
    >>> reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)  # doctest: +SKIP
    >>> epochs = mne.Epochs(raw, events, event_id=1, tmin=-0.2, tmax=0.5,  # doctest: +SKIP
    >>>                     proj=True, picks=picks, baseline=(None, 0),  # doctest: +SKIP
    >>>                     preload=True, reject=reject)  # doctest: +SKIP
    >>> # Compute evoked response and noise covariance
    >>> evoked = epochs.average()  # doctest: +SKIP
    >>> cov = mne.compute_covariance(epochs, tmax=0)  # doctest: +SKIP
    >>> evoked.plot()  # plot evoked  # doctest: +SKIP
    >>> # Compute inverse operator:
    >>> fwd_fname = 'sample_audvis−meg−eeg−oct−6−fwd.fif'  # doctest: +SKIP
    >>> fwd = mne.read_forward_solution(fwd_fname, surf_ori=True)  # doctest: +SKIP
    >>> inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd,  # doctest: +SKIP
    >>>                                              cov, loose=0.2)  # doctest: +SKIP
    >>> # Compute inverse solution:
    >>> stc = mne.minimum_norm.apply_inverse(evoked, inv, lambda2=1./9.,  # doctest: +SKIP
    >>>                                      method='dSPM')  # doctest: +SKIP
    >>> # Morph it to average brain for group study and plot it
    >>> stc_avg = mne.morph_data('sample', 'fsaverage', stc, 5, smooth=5)  # doctest: +SKIP
    >>> stc_avg.plot()  # doctest: +SKIP

MNE development is driven by :ref:`extensive contributions from the community <whats_new>`.
Direct financial support for the project has been provided by:

- (US) National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grants 5R01EB009048 and P41EB015896 (Center for Functional Neuroimaging
  Technologies)
- (US) NSF awards 0958669 and 1042134.
- (US) NCRR *Center for Functional Neuroimaging Technologies* P41RR14075-06
- (US) NIH grants 1R01EB009048-01, R01 EB006385-A101, 1R01 HD40712-A1, 1R01
  NS44319-01, and 2R01 NS37462-05
- (US) Department of Energy Award Number DE-FG02-99ER62764 to The MIND
  Institute.
- (FR) IDEX Paris-Saclay, ANR-11-IDEX-0003-02, via the
  `Center for Data Science <http://www.datascience-paris-saclay.fr/>`_.
- (FR) European Research Council (ERC) Starting Grant (ERC-YStG-263584).
- (FR) French National Research Agency (ANR-14-NEUC-0002-01).
- (FR) European Research Council (ERC) Starting Grant (ERC-YStG-676943).
- Amazon Web Services - Research Grant issued to Denis A. Engemann

.. raw:: html

   <div class="col-md-8">
       <script type="text/javascript" src="http://www.ohloh.net/p/586838/widgets/project_basic_stats.js"></script>
   </div>


.. raw:: html

   </div>
   <div class="col-md-4">
   <h2>Documentation</h2>

.. toctree::
   :maxdepth: 1

   getting_started
   tutorials
   auto_examples/index
   faq
   contributing

.. toctree::
   :maxdepth: 1

   python_reference
   manual/index
   whats_new

.. toctree::
   :maxdepth: 1

   cite
   references
   cited

.. raw:: html

   <h2>Community</h2>

* Analysis talk: join the `MNE mailing list`_

* `Feature requests and bug reports on GitHub <https://github.com/mne-tools/mne-python/issues/>`_

* `Chat with developers on Gitter <https://gitter.im/mne-tools/mne-python>`_

.. raw:: html

   <h2>Versions</h2>

   <ul>
      <li><a href=http://martinos.org/mne/stable>Stable</a></li>
      <li><a href=http://martinos.org/mne/dev>Development</a></li>
   </ul>

   <div style="float: left; padding: 10px; width: 100%;">
       <a class="twitter-timeline" href="https://twitter.com/mne_python" data-widget-id="317730454184804352">Tweets by @mne_python</a>
   </div>

   </div>
   </div>
   </div>