File: datasets_index.rst

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (126 lines) | stat: -rw-r--r-- 5,370 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
.. _datasets:

Datasets
########

.. contents:: Contents
   :local:
   :depth: 2

All the dataset fetchers are available in :mod:`mne.datasets`. To download any of the datasets,
use the ``data_path`` (fetches full dataset) or the ``load_data`` (fetches dataset partially) functions.

Sample
======
:ref:`ch_sample_data` is recorded using a 306-channel Neuromag vectorview system. 

In this experiment, checkerboard patterns were presented to the subject
into the left and right visual field, interspersed by tones to the
left or right ear. The interval between the stimuli was 750 ms. Occasionally
a smiley face was presented at the center of the visual field.
The subject was asked to press a key with the right index finger
as soon as possible after the appearance of the face. To fetch this dataset, do::

    from mne.datasets import sample
    data_path = sample.data_path()  # returns the folder in which the data is locally stored.

Once the ``data_path`` is known, its contents can be examined using :ref:`IO functions <ch_convert>`.

Brainstorm
==========
Dataset fetchers for three Brainstorm tutorials are available. Users must agree to the
license terms of these datasets before downloading them. These files are recorded in a CTF 275 system.
The data is converted to `fif` format before being made available to MNE users. However, MNE-Python now supports
IO for the `ctf` format as well in addition to the C converter utilities. Please consult the :ref:`IO section <ch_convert>` for details.

Auditory
^^^^^^^^
To access the data, use the following Python commands::
    
    from mne.datasets.brainstorm import bst_raw
    data_path = bst_raw.data_path()

Further details about the data can be found at the `auditory dataset tutorial`_ on the Brainstorm website.

.. topic:: Examples

    * :ref:`Brainstorm auditory dataset tutorial<sphx_glr_auto_examples_datasets_plot_brainstorm_data.py>`: Partially replicates the original Brainstorm tutorial.

Resting state
^^^^^^^^^^^^^
To access the data, use the Python command::

    from mne.datasets.brainstorm import bst_resting
    data_path = bst_resting.data_path()

Further details can be found at the `resting state dataset tutorial`_ on the Brainstorm website.

Median nerve
^^^^^^^^^^^^
To access the data, use the Python command::

    from mne.datasets.brainstorm import bst_raw
    data_path = bst_raw.data_path()

Further details can be found at the `median nerve dataset tutorial`_ on the Brainstorm website.

MEGSIM
======
This dataset contains experimental and simulated MEG data. To load data from this dataset, do::

    from mne.io import Raw
    from mne.datasets.megsim import load_data
    raw_fnames = load_data(condition='visual', data_format='raw', data_type='experimental', verbose=True)
    raw = Raw(raw_fnames[0])

Detailed description of the dataset can be found in the related publication [1]_.

.. topic:: Examples

    * :ref:`sphx_glr_auto_examples_datasets_plot_megsim_data.py`

SPM faces
=========
The `SPM faces dataset`_ contains EEG, MEG and fMRI recordings on face perception. To access this dataset, do::

    from mne.datasets import spm_face
    data_path = spm_face.data_path()

.. topic:: Examples

    * :ref:`sphx_glr_auto_examples_datasets_plot_spm_faces_dataset.py` Full pipeline including artifact removal, epochs averaging, forward model computation and source reconstruction using dSPM on the contrast: "faces - scrambled".

EEGBCI motor imagery
====================

The EEGBCI dataset is documented in [2]_. The data set is available at PhysioNet [3]_.
The dataset contains 64-channel EEG recordings from 109 subjects and 14 runs on each subject in EDF+ format.
The recordings were made using the BCI2000 system. To load a subject, do::

    from mne.io import concatenate_raws, read_raw_edf
    from mne.datasets import eegbci
    raw_fnames = eegbci.load_data(subject, runs)
    raws = [read_raw_edf(f, preload=True) for f in raw_fnames]
    raw = concatenate_raws(raws)

.. topic:: Examples

    * :ref:`sphx_glr_auto_examples_decoding_plot_decoding_csp_eeg.py`

Do not hesitate to contact MNE-Python developers on the
`MNE mailing list <http://mail.nmr.mgh.harvard.edu/mailman/listinfo/mne_analysis>`_
to discuss the possibility to add more publicly available datasets.

.. _auditory dataset tutorial: http://neuroimage.usc.edu/brainstorm/DatasetAuditory
.. _resting state dataset tutorial: http://neuroimage.usc.edu/brainstorm/DatasetResting
.. _median nerve dataset tutorial: http://neuroimage.usc.edu/brainstorm/DatasetMedianNerveCtf
.. _SPM faces dataset: http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/

References
==========

.. [1] Aine CJ, Sanfratello L, Ranken D, Best E, MacArthur JA, Wallace T, Gilliam K, Donahue CH, Montano R, Bryant JE, Scott A, Stephen JM (2012) MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data. Neuroinform 10:141-158

.. [2] Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE TBME 51(6):1034-1043

.. [3] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220