File: plot_evoked_whitening.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (80 lines) | stat: -rw-r--r-- 2,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
=============================================
Whitening evoked data with a noise covariance
=============================================

Evoked data are loaded and then whitened using a given noise covariance
matrix. It's an excellent quality check to see if baseline signals match
the assumption of Gaussian white noise from which we expect values around
0 with less than 2 standard deviations. Covariance estimation and diagnostic
plots are based on [1].

References
----------
[1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance
    estimation and spatial whitening of MEG and EEG signals, vol. 108,
    328-342, NeuroImage.

"""
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

import mne

from mne import io
from mne.datasets import sample
from mne.cov import compute_covariance

print(__doc__)

###############################################################################
# Set parameters

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'

raw = io.read_raw_fif(raw_fname, preload=True)
raw.filter(1, 40, method='iir', n_jobs=1)
raw.info['bads'] += ['MEG 2443']  # bads + 1 more
events = mne.read_events(event_fname)

# let's look at rare events, button presses
event_id, tmin, tmax = 2, -0.2, 0.5
picks = mne.pick_types(raw.info, meg=True, eeg=True, eog=True, exclude='bads')
reject = dict(mag=4e-12, grad=4000e-13, eeg=80e-6)

epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=None, reject=reject, preload=True)

# Uncomment next line to use fewer samples and study regularization effects
# epochs = epochs[:20]  # For your data, use as many samples as you can!

###############################################################################
# Compute covariance using automated regularization
noise_covs = compute_covariance(epochs, tmin=None, tmax=0, method='auto',
                                return_estimators=True, verbose=True, n_jobs=1,
                                projs=None)

# With "return_estimator=True" all estimated covariances sorted
# by log-likelihood are returned.

print('Covariance estimates sorted from best to worst')
for c in noise_covs:
    print("%s : %s" % (c['method'], c['loglik']))

###############################################################################
# Show whitening

evoked = epochs.average()

evoked.plot()  # plot evoked response

# plot the whitened evoked data for to see if baseline signals match the
# assumption of Gaussian white noise from which we expect values around
# 0 with less than 2 standard deviations. For the Global field power we expect
# a value of 1.

evoked.plot_white(noise_covs)