1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# -*- coding: utf-8 -*-
"""
===============================================================================
Script 'mne logo'
===============================================================================
This script makes the logo for MNE.
"""
# @author: drmccloy
# Created on Mon Jul 20 11:28:16 2015
# License: BSD (3-clause)
import numpy as np
import os.path as op
import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib.mlab import bivariate_normal
from matplotlib.path import Path
from matplotlib.text import TextPath
from matplotlib.patches import PathPatch
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.transforms import Bbox
# manually set values
dpi = 72.
center_fudge = np.array([2, 0]) # compensate for font bounding box padding
tagline_scale_fudge = 0.98 # to get justification right
tagline_offset_fudge = np.array([0.4, 0])
static_dir = op.join('..', 'doc', '_static')
# font, etc
rcp = {'font.sans-serif': ['Primetime'], 'font.style': 'normal',
'font.weight': 'black', 'font.variant': 'normal', 'figure.dpi': dpi,
'savefig.dpi': dpi, 'contour.negative_linestyle': 'solid'}
plt.rcdefaults()
rcParams.update(rcp)
# initialize figure (no axes, margins, etc)
fig = plt.figure(1, figsize=(5, 3), frameon=False, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
# fake field data
delta = 0.1
x = np.arange(-8.0, 8.0, delta)
y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = bivariate_normal(X, Y, 8.0, 7.0, -5.0, 0.9, 1.0)
Z2 = bivariate_normal(X, Y, 15.0, 2.5, 2.6, -2.5, 2.5)
Z = Z2 - 0.7 * Z1
# color map: field gradient (yellow-red-transparent-blue-cyan)
yrtbc = {'red': ((0.0, 1.0, 1.0), (0.5, 1.0, 0.0), (1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 0.0), (0.5, 0.0, 1.0), (1.0, 1.0, 1.0)),
'green': ((0.0, 1.0, 1.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)),
'alpha': ((0.0, 1.0, 1.0), (0.4, 0.8, 0.8), (0.5, 0.2, 0.2),
(0.6, 0.8, 0.8), (1.0, 1.0, 1.0))}
# color map: field lines (red | blue)
redbl = {'red': ((0., 1., 1.), (0.5, 1., 0.), (1., 0., 0.)),
'blue': ((0., 0., 0.), (0.5, 0., 1.), (1., 1., 1.)),
'green': ((0., 0., 0.), (1., 0., 0.)),
'alpha': ((0., 0.4, 0.4), (1., 0.4, 0.4))}
mne_field_grad_cols = LinearSegmentedColormap('mne_grad', yrtbc)
mne_field_line_cols = LinearSegmentedColormap('mne_line', redbl)
# plot gradient and contour lines
im = plt.imshow(Z, cmap=mne_field_grad_cols, aspect='equal')
cs = plt.contour(Z, 9, cmap=mne_field_line_cols, linewidths=1)
plot_dims = np.r_[np.diff(ax.get_xbound()), np.diff(ax.get_ybound())]
# create MNE clipping mask
mne_path = TextPath((0, 0), 'MNE')
dims = mne_path.vertices.max(0) - mne_path.vertices.min(0)
vert = mne_path.vertices - dims / 2.
mult = (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted (origin at top left)
offset = plot_dims / 2. - center_fudge
mne_clip = Path(offset + vert * mult, mne_path.codes)
# apply clipping mask to field gradient and lines
im.set_clip_path(mne_clip, transform=im.get_transform())
for coll in cs.collections:
coll.set_clip_path(mne_clip, transform=im.get_transform())
# get final position of clipping mask
mne_corners = mne_clip.get_extents().corners()
# add tagline
rcParams.update({'font.sans-serif': ['Cooper Hewitt'], 'font.weight': 'light'})
tag_path = TextPath((0, 0), 'MEG + EEG ANALYSIS & VISUALIZATION')
dims = tag_path.vertices.max(0) - tag_path.vertices.min(0)
vert = tag_path.vertices - dims / 2.
mult = tagline_scale_fudge * (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted
offset = mne_corners[-1] - np.array([mne_clip.get_extents().size[0] / 2.,
-dims[1]]) - tagline_offset_fudge
tag_clip = Path(offset + vert * mult, tag_path.codes)
tag_patch = PathPatch(tag_clip, facecolor='k', edgecolor='none', zorder=10)
ax.add_patch(tag_patch)
yl = ax.get_ylim()
yy = np.max([tag_clip.vertices.max(0)[-1],
tag_clip.vertices.min(0)[-1]])
ax.set_ylim(np.ceil(yy), yl[-1])
# only save actual image extent plus a bit of padding
extent = Bbox(np.c_[ax.get_xlim(), ax.get_ylim()])
extent = extent.transformed(ax.transData + fig.dpi_scale_trans.inverted())
plt.draw()
plt.savefig(op.join(static_dir, 'mne_logo.png'),
bbox_inches=extent.expanded(1.2, 1.))
plt.close()
# 92x22 image
w_px = 92
h_px = 22
center_fudge = np.array([12, 0.5])
scale_fudge = 2.1
rcParams.update({'font.sans-serif': ['Primetime'], 'font.weight': 'black'})
x = np.linspace(-8., 8., w_px / 2.)
y = np.linspace(-3., 3., h_px / 2.)
X, Y = np.meshgrid(x, y)
# initialize figure (no axes, margins, etc)
fig = plt.figure(1, figsize=(w_px / dpi, h_px / dpi), frameon=False, dpi=dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
# plot rainbow
im = plt.imshow(X, cmap=mne_field_grad_cols, aspect='equal')
plot_dims = np.r_[np.diff(ax.get_xbound()), np.diff(ax.get_ybound())]
# MNE text in white
mne_path = TextPath((0, 0), 'MNE')
dims = mne_path.vertices.max(0) - mne_path.vertices.min(0)
vert = mne_path.vertices - dims / 2.
mult = scale_fudge * (plot_dims / dims).min()
mult = [mult, -mult] # y axis is inverted (origin at top left)
offset = np.array([scale_fudge, 1.]) * \
np.array([-dims[0], plot_dims[-1]]) / 2. - center_fudge
mne_clip = Path(offset + vert * mult, mne_path.codes)
mne_patch = PathPatch(mne_clip, facecolor='w', edgecolor='none', zorder=10)
ax.add_patch(mne_patch)
# adjust xlim and ylim
mne_corners = mne_clip.get_extents().corners()
xmin, ymin = np.min(mne_corners, axis=0)
xmax, ymax = np.max(mne_corners, axis=0)
xl = ax.get_xlim()
yl = ax.get_ylim()
xpad = np.abs(np.diff([xmin, xl[1]])) / 20.
ypad = np.abs(np.diff([ymax, ymin])) / 20.
ax.set_xlim(xmin - xpad, xl[1] + xpad)
ax.set_ylim(ymax + ypad, ymin - ypad)
extent = Bbox(np.c_[ax.get_xlim(), ax.get_ylim()])
extent = extent.transformed(ax.transData + fig.dpi_scale_trans.inverted())
plt.draw()
plt.savefig(op.join(static_dir, 'mne_logo_small.png'), transparent=True,
bbox_inches=extent)
plt.close()
|