File: annotations.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (132 lines) | stat: -rw-r--r-- 5,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Authors: Jaakko Leppakangas <jaeilepp@student.jyu.fi>
#
# License: BSD (3-clause)

from datetime import datetime
import time

import numpy as np

from .externals.six import string_types


class Annotations(object):
    """Annotation object for annotating segments of raw data.

    Annotations are added to instance of :class:`mne.io.Raw` as an attribute
    named ``annotations``. See the example below. To reject bad epochs using
    annotations, use annotation description starting with 'bad' keyword. The
    epochs with overlapping bad segments are then rejected automatically by
    default.

    To remove epochs with blinks you can do::
        >>> eog_events = mne.preprocessing.find_eog_events(raw)  # doctest: +SKIP
        >>> n_blinks = len(eog_events)  # doctest: +SKIP
        >>> onset = eog_events[:, 0] / raw.info['sfreq'] - 0.25  # doctest: +SKIP
        >>> duration = np.repeat(0.5, n_blinks)  # doctest: +SKIP
        >>> description = ['bad blink'] * n_blinks  # doctest: +SKIP
        >>> annotations = mne.Annotations(onset, duration, description)  # doctest: +SKIP
        >>> raw.annotations = annotations  # doctest: +SKIP
        >>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax)  # doctest: +SKIP

    Parameters
    ----------
    onset : array of float, shape (n_annotations,)
        Annotation time onsets from the beginning of the recording in seconds.
    duration : array of float, shape (n_annotations,)
        Durations of the annotations in seconds.
    description : array of str, shape (n_annotations,) | str
        Array of strings containing description for each annotation. If a
        string, all the annotations are given the same description. To reject
        epochs, use description starting with keyword 'bad'. See example above.
    orig_time : float | int | instance of datetime | array of int | None
        A POSIX Timestamp, datetime or an array containing the timestamp as the
        first element and microseconds as the second element. Determines the
        starting time of annotation acquisition. If None (default),
        starting time is determined from beginning of raw data acquisition.
        In general, ``raw.info['meas_date']`` (or None) can be used for syncing
        the annotations with raw data if their acquisiton is started at the
        same time.

    Notes
    -----
    If ``orig_time`` is None, the annotations are synced to the start of the
    data (0 seconds). Otherwise the annotations are synced to sample 0 and
    ``raw.first_samp`` is taken into account the same way as with events.
    """  # noqa
    def __init__(self, onset, duration, description, orig_time=None):

        if orig_time is not None:
            if isinstance(orig_time, datetime):
                orig_time = float(time.mktime(orig_time.timetuple()))
            elif not np.isscalar(orig_time):
                orig_time = orig_time[0] + orig_time[1] / 1000000.
            else:  # isscalar
                orig_time = float(orig_time)  # np.int not serializable
        self.orig_time = orig_time

        onset = np.array(onset, dtype=float)
        if onset.ndim != 1:
            raise ValueError('Onset must be a one dimensional array.')
        duration = np.array(duration, dtype=float)
        if isinstance(description, string_types):
            description = np.repeat(description, len(onset))
        if duration.ndim != 1:
            raise ValueError('Duration must be a one dimensional array.')
        if not (len(onset) == len(duration) == len(description)):
            raise ValueError('Onset, duration and description must be '
                             'equal in sizes.')
        if any([';' in desc for desc in description]):
            raise ValueError('Semicolons in descriptions not supported.')

        self.onset = onset
        self.duration = duration
        self.description = np.array(description)


def _combine_annotations(annotations, last_samps, first_samps, sfreq):
    """Helper for combining a tuple of annotations."""
    if not any(annotations):
        return None
    elif annotations[1] is None:
        return annotations[0]
    elif annotations[0] is None:
        old_onset = list()
        old_duration = list()
        old_description = list()
        old_orig_time = None
    else:
        old_onset = annotations[0].onset
        old_duration = annotations[0].duration
        old_description = annotations[0].description
        old_orig_time = annotations[0].orig_time

    extra_samps = len(first_samps) - 1  # Account for sample 0
    onset = (annotations[1].onset + (sum(last_samps[:-1]) + extra_samps -
                                     sum(first_samps[:-1])) / sfreq)

    onset = np.concatenate([old_onset, onset])
    duration = np.concatenate([old_duration, annotations[1].duration])
    description = np.concatenate([old_description, annotations[1].description])
    return Annotations(onset, duration, description, old_orig_time)


def _onset_to_seconds(raw, onset):
    """Helper function for adjusting annotation onsets in relation to raw data.
    """
    meas_date = raw.info['meas_date']
    if meas_date is None:
        meas_date = 0
    elif not np.isscalar(meas_date):
        if len(meas_date) > 1:
            meas_date = meas_date[0] + meas_date[1] / 1000000.
        else:
            meas_date = meas_date[0]
    if raw.annotations.orig_time is None:
        orig_time = meas_date
    else:
        orig_time = (raw.annotations.orig_time -
                     raw.first_samp / raw.info['sfreq'])

    annot_start = orig_time - meas_date + onset
    return annot_start