File: test_dics.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (311 lines) | stat: -rw-r--r-- 12,710 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from __future__ import print_function
import warnings
import os.path as op
import copy as cp

from nose.tools import assert_true, assert_raises
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal

import mne
from mne.datasets import testing
from mne.beamformer import dics, dics_epochs, dics_source_power, tf_dics
from mne.time_frequency import csd_epochs
from mne.externals.six import advance_iterator
from mne.utils import run_tests_if_main

# Note that this is the first test file, this will apply to all subsequent
# tests in a full nosetest:
warnings.simplefilter("always")  # ensure we can verify expected warnings

data_path = testing.data_path(download=False)
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_fwd_vol = op.join(data_path, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-vol-7-fwd.fif')
fname_event = op.join(data_path, 'MEG', 'sample',
                      'sample_audvis_trunc_raw-eve.fif')
label = 'Aud-lh'
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label)


def read_forward_solution_meg(*args, **kwargs):
    fwd = mne.read_forward_solution(*args, **kwargs)
    return mne.pick_types_forward(fwd, meg=True, eeg=False)


def _get_data(tmin=-0.11, tmax=0.15, read_all_forward=True, compute_csds=True):
    """Read in data used in tests
    """
    label = mne.read_label(fname_label)
    events = mne.read_events(fname_event)[:10]
    raw = mne.io.read_raw_fif(fname_raw, preload=False, add_eeg_ref=False)
    raw.add_proj([], remove_existing=True)  # we'll subselect so remove proj
    forward = mne.read_forward_solution(fname_fwd)
    if read_all_forward:
        forward_surf_ori = read_forward_solution_meg(fname_fwd, surf_ori=True)
        forward_fixed = read_forward_solution_meg(fname_fwd, force_fixed=True,
                                                  surf_ori=True)
        forward_vol = mne.read_forward_solution(fname_fwd_vol, surf_ori=True)
    else:
        forward_surf_ori = None
        forward_fixed = None
        forward_vol = None

    event_id, tmin, tmax = 1, tmin, tmax

    # Setup for reading the raw data
    raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels

    # Set up pick list: MEG - bad channels
    left_temporal_channels = mne.read_selection('Left-temporal')
    picks = mne.pick_types(raw.info, meg=True, eeg=False,
                           stim=True, eog=True, exclude='bads',
                           selection=left_temporal_channels)

    # Read epochs
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, baseline=(None, 0), preload=True,
                        reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6),
                        add_eeg_ref=False)
    epochs.resample(200, npad=0, n_jobs=2)
    evoked = epochs.average()

    # Computing the data and noise cross-spectral density matrices
    if compute_csds:
        data_csd = csd_epochs(epochs, mode='multitaper', tmin=0.045,
                              tmax=None, fmin=8, fmax=12,
                              mt_bandwidth=72.72)
        noise_csd = csd_epochs(epochs, mode='multitaper', tmin=None,
                               tmax=0.0, fmin=8, fmax=12,
                               mt_bandwidth=72.72)
    else:
        data_csd, noise_csd = None, None

    return raw, epochs, evoked, data_csd, noise_csd, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol


@testing.requires_testing_data
def test_dics():
    """Test DICS with evoked data and single trials
    """
    raw, epochs, evoked, data_csd, noise_csd, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol = _get_data()

    stc = dics(evoked, forward, noise_csd=noise_csd, data_csd=data_csd,
               label=label)

    stc.crop(0, None)
    stc_pow = np.sum(stc.data, axis=1)
    idx = np.argmax(stc_pow)
    max_stc = stc.data[idx]
    tmax = stc.times[np.argmax(max_stc)]

    # Incorrect due to limited number of epochs
    assert_true(0.04 < tmax < 0.05)
    assert_true(10 < np.max(max_stc) < 13)

    # Test picking normal orientation
    stc_normal = dics(evoked, forward_surf_ori, noise_csd, data_csd,
                      pick_ori="normal", label=label)
    stc_normal.crop(0, None)

    # The amplitude of normal orientation results should always be smaller than
    # free orientation results
    assert_true((np.abs(stc_normal.data) <= stc.data).all())

    # Test if fixed forward operator is detected when picking normal
    # orientation
    assert_raises(ValueError, dics_epochs, epochs, forward_fixed, noise_csd,
                  data_csd, pick_ori="normal")

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    assert_raises(ValueError, dics_epochs, epochs, forward, noise_csd,
                  data_csd, pick_ori="normal")

    # Test if volume forward operator is detected when picking normal
    # orientation
    assert_raises(ValueError, dics_epochs, epochs, forward_vol, noise_csd,
                  data_csd, pick_ori="normal")

    # Now test single trial using fixed orientation forward solution
    # so we can compare it to the evoked solution
    stcs = dics_epochs(epochs, forward_fixed, noise_csd, data_csd, reg=0.01,
                       label=label)

    # Testing returning of generator
    stcs_ = dics_epochs(epochs, forward_fixed, noise_csd, data_csd, reg=0.01,
                        return_generator=True, label=label)
    assert_array_equal(stcs[0].data, advance_iterator(stcs_).data)

    # Test whether correct number of trials was returned
    epochs.drop_bad()
    assert_true(len(epochs.events) == len(stcs))

    # Average the single trial estimates
    stc_avg = np.zeros_like(stc.data)
    for this_stc in stcs:
        stc_avg += this_stc.crop(0, None).data
    stc_avg /= len(stcs)

    idx = np.argmax(np.max(stc_avg, axis=1))
    max_stc = stc_avg[idx]
    tmax = stc.times[np.argmax(max_stc)]

    assert_true(0.045 < tmax < 0.06)  # incorrect due to limited # of epochs
    assert_true(12 < np.max(max_stc) < 18.5)


@testing.requires_testing_data
def test_dics_source_power():
    """Test DICS source power computation
    """
    raw, epochs, evoked, data_csd, noise_csd, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol = _get_data()

    stc_source_power = dics_source_power(epochs.info, forward, noise_csd,
                                         data_csd, label=label)

    max_source_idx = np.argmax(stc_source_power.data)
    max_source_power = np.max(stc_source_power.data)

    # TODO: Maybe these could be more directly compared to dics() results?
    assert_true(max_source_idx == 0)
    assert_true(0.5 < max_source_power < 1.15)

    # Test picking normal orientation and using a list of CSD matrices
    stc_normal = dics_source_power(epochs.info, forward_surf_ori,
                                   [noise_csd] * 2, [data_csd] * 2,
                                   pick_ori="normal", label=label)

    assert_true(stc_normal.data.shape == (stc_source_power.data.shape[0], 2))

    # The normal orientation results should always be smaller than free
    # orientation results
    assert_true((np.abs(stc_normal.data[:, 0]) <=
                 stc_source_power.data[:, 0]).all())

    # Test if fixed forward operator is detected when picking normal
    # orientation
    assert_raises(ValueError, dics_source_power, raw.info, forward_fixed,
                  noise_csd, data_csd, pick_ori="normal")

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    assert_raises(ValueError, dics_source_power, raw.info, forward, noise_csd,
                  data_csd, pick_ori="normal")

    # Test if volume forward operator is detected when picking normal
    # orientation
    assert_raises(ValueError, dics_source_power, epochs.info, forward_vol,
                  noise_csd, data_csd, pick_ori="normal")

    # Test detection of different number of CSD matrices provided
    assert_raises(ValueError, dics_source_power, epochs.info, forward,
                  [noise_csd] * 2, [data_csd] * 3)

    # Test detection of different frequencies in noise and data CSD objects
    noise_csd.frequencies = [1, 2]
    data_csd.frequencies = [1, 2, 3]
    assert_raises(ValueError, dics_source_power, epochs.info, forward,
                  noise_csd, data_csd)

    # Test detection of uneven frequency spacing
    data_csds = [cp.deepcopy(data_csd) for i in range(3)]
    frequencies = [1, 3, 4]
    for freq, data_csd in zip(frequencies, data_csds):
        data_csd.frequencies = [freq]
    noise_csds = data_csds
    with warnings.catch_warnings(record=True) as w:
        dics_source_power(epochs.info, forward, noise_csds, data_csds)
    assert len(w) == 1


@testing.requires_testing_data
def test_tf_dics():
    """Test TF beamforming based on DICS
    """
    tmin, tmax, tstep = -0.2, 0.2, 0.1
    raw, epochs, _, _, _, label, forward, _, _, _ =\
        _get_data(tmin, tmax, read_all_forward=False, compute_csds=False)

    freq_bins = [(4, 20), (30, 55)]
    win_lengths = [0.2, 0.2]
    reg = 0.001

    noise_csds = []
    for freq_bin, win_length in zip(freq_bins, win_lengths):
        noise_csd = csd_epochs(epochs, mode='fourier',
                               fmin=freq_bin[0], fmax=freq_bin[1],
                               fsum=True, tmin=tmin,
                               tmax=tmin + win_length)
        noise_csds.append(noise_csd)

    stcs = tf_dics(epochs, forward, noise_csds, tmin, tmax, tstep, win_lengths,
                   freq_bins, reg=reg, label=label)

    assert_true(len(stcs) == len(freq_bins))
    assert_true(stcs[0].shape[1] == 4)

    # Manually calculating source power in several time windows to compare
    # results and test overlapping
    source_power = []
    time_windows = [(-0.1, 0.1), (0.0, 0.2)]
    for time_window in time_windows:
        data_csd = csd_epochs(epochs, mode='fourier',
                              fmin=freq_bins[0][0],
                              fmax=freq_bins[0][1], fsum=True,
                              tmin=time_window[0], tmax=time_window[1])
        noise_csd = csd_epochs(epochs, mode='fourier',
                               fmin=freq_bins[0][0],
                               fmax=freq_bins[0][1], fsum=True,
                               tmin=-0.2, tmax=0.0)
        data_csd.data /= data_csd.n_fft
        noise_csd.data /= noise_csd.n_fft
        stc_source_power = dics_source_power(epochs.info, forward, noise_csd,
                                             data_csd, reg=reg, label=label)
        source_power.append(stc_source_power.data)

    # Averaging all time windows that overlap the time period 0 to 100 ms
    source_power = np.mean(source_power, axis=0)

    # Selecting the first frequency bin in tf_dics results
    stc = stcs[0]

    # Comparing tf_dics results with dics_source_power results
    assert_array_almost_equal(stc.data[:, 2], source_power[:, 0])

    # Test if using unsupported max-power orientation is detected
    assert_raises(ValueError, tf_dics, epochs, forward, noise_csds, tmin, tmax,
                  tstep, win_lengths, freq_bins=freq_bins,
                  pick_ori='max-power')

    # Test if incorrect number of noise CSDs is detected
    assert_raises(ValueError, tf_dics, epochs, forward, [noise_csds[0]], tmin,
                  tmax, tstep, win_lengths, freq_bins=freq_bins)

    # Test if freq_bins and win_lengths incompatibility is detected
    assert_raises(ValueError, tf_dics, epochs, forward, noise_csds, tmin, tmax,
                  tstep, win_lengths=[0, 1, 2], freq_bins=freq_bins)

    # Test if time step exceeding window lengths is detected
    assert_raises(ValueError, tf_dics, epochs, forward, noise_csds, tmin, tmax,
                  tstep=0.15, win_lengths=[0.2, 0.1], freq_bins=freq_bins)

    # Test if incorrect number of mt_bandwidths is detected
    assert_raises(ValueError, tf_dics, epochs, forward, noise_csds, tmin, tmax,
                  tstep, win_lengths, freq_bins, mode='multitaper',
                  mt_bandwidths=[20])

    # Pass only one epoch to test if subtracting evoked responses yields zeros
    stcs = tf_dics(epochs[0], forward, noise_csds, tmin, tmax, tstep,
                   win_lengths, freq_bins, subtract_evoked=True, reg=reg,
                   label=label)

    assert_array_almost_equal(stcs[0].data, np.zeros_like(stcs[0].data))


run_tests_if_main()