File: test_rap_music.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (152 lines) | stat: -rw-r--r-- 5,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Authors: Yousra Bekhti <yousra.bekhti@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

import os.path as op
import numpy as np
from scipy import linalg

import warnings
from nose.tools import assert_true

import mne
from mne.datasets import testing
from mne.beamformer import rap_music
from mne.utils import run_tests_if_main


data_path = testing.data_path(download=False)
fname_ave = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')

warnings.simplefilter('always')  # enable b/c these tests throw warnings


def _read_forward_solution_meg(fname_fwd, **kwargs):
    fwd = mne.read_forward_solution(fname_fwd, **kwargs)
    return mne.pick_types_forward(fwd, meg=True, eeg=False,
                                  exclude=['MEG 2443'])


def _get_data(event_id=1):
    """Read in data used in tests
    """
    # Read evoked
    evoked = mne.read_evokeds(fname_ave, event_id)
    evoked.pick_types(meg=True, eeg=False)
    evoked.crop(0, 0.3)

    forward = mne.read_forward_solution(fname_fwd)

    forward_surf_ori = _read_forward_solution_meg(fname_fwd, surf_ori=True)
    forward_fixed = _read_forward_solution_meg(fname_fwd, force_fixed=True,
                                               surf_ori=True)

    noise_cov = mne.read_cov(fname_cov)

    return evoked, noise_cov, forward, forward_surf_ori, forward_fixed


def simu_data(evoked, forward, noise_cov, n_dipoles, times):
    """Simulate an evoked dataset with 2 sources

    One source is put in each hemisphere.
    """
    # Generate the two dipoles data
    mu, sigma = 0.1, 0.005
    s1 = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-(times - mu) ** 2 /
                                                   (2 * sigma ** 2))

    mu, sigma = 0.075, 0.008
    s2 = 1 / (sigma * np.sqrt(2 * np.pi)) * np.exp(-(times - mu) ** 2 /
                                                   (2 * sigma ** 2))
    data = np.array([s1, s2]) * 1e-9

    src = forward['src']
    rng = np.random.RandomState(42)

    rndi = rng.randint(len(src[0]['vertno']))
    lh_vertno = src[0]['vertno'][[rndi]]

    rndi = rng.randint(len(src[1]['vertno']))
    rh_vertno = src[1]['vertno'][[rndi]]

    vertices = [lh_vertno, rh_vertno]
    tmin, tstep = times.min(), 1 / evoked.info['sfreq']
    stc = mne.SourceEstimate(data, vertices=vertices, tmin=tmin, tstep=tstep)

    sim_evoked = mne.simulation.simulate_evoked(forward, stc, evoked.info,
                                                noise_cov, snr=20,
                                                random_state=rng)

    return sim_evoked, stc


def _check_dipoles(dipoles, fwd, stc, evoked, residual=None):
    src = fwd['src']
    pos1 = fwd['source_rr'][np.where(src[0]['vertno'] ==
                                     stc.vertices[0])]
    pos2 = fwd['source_rr'][np.where(src[1]['vertno'] ==
                                     stc.vertices[1])[0] +
                            len(src[0]['vertno'])]

    # Check the position of the two dipoles
    assert_true(dipoles[0].pos[0] in np.array([pos1, pos2]))
    assert_true(dipoles[1].pos[0] in np.array([pos1, pos2]))

    ori1 = fwd['source_nn'][np.where(src[0]['vertno'] ==
                                     stc.vertices[0])[0]][0]
    ori2 = fwd['source_nn'][np.where(src[1]['vertno'] ==
                                     stc.vertices[1])[0] +
                            len(src[0]['vertno'])][0]

    # Check the orientation of the dipoles
    assert_true(np.max(np.abs(np.dot(dipoles[0].ori[0],
                                     np.array([ori1, ori2]).T))) > 0.99)

    assert_true(np.max(np.abs(np.dot(dipoles[1].ori[0],
                                     np.array([ori1, ori2]).T))) > 0.99)

    if residual is not None:
        picks_grad = mne.pick_types(residual.info, meg='grad')
        picks_mag = mne.pick_types(residual.info, meg='mag')
        rel_tol = 0.02
        for picks in [picks_grad, picks_mag]:
            assert_true(linalg.norm(residual.data[picks], ord='fro') <
                        rel_tol *
                        linalg.norm(evoked.data[picks], ord='fro'))


@testing.requires_testing_data
def test_rap_music_simulated():
    """Test RAP-MUSIC with simulated evoked
    """
    evoked, noise_cov, forward, forward_surf_ori, forward_fixed =\
        _get_data()

    n_dipoles = 2
    sim_evoked, stc = simu_data(evoked, forward_fixed, noise_cov,
                                n_dipoles, evoked.times)
    # Check dipoles for fixed ori
    dipoles = rap_music(sim_evoked, forward_fixed, noise_cov,
                        n_dipoles=n_dipoles)
    _check_dipoles(dipoles, forward_fixed, stc, evoked)

    dipoles, residual = rap_music(sim_evoked, forward_fixed, noise_cov,
                                  n_dipoles=n_dipoles, return_residual=True)
    _check_dipoles(dipoles, forward_fixed, stc, evoked, residual)

    # Check dipoles for free ori
    dipoles, residual = rap_music(sim_evoked, forward, noise_cov,
                                  n_dipoles=n_dipoles, return_residual=True)
    _check_dipoles(dipoles, forward_fixed, stc, evoked, residual)

    # Check dipoles for free surface ori
    dipoles, residual = rap_music(sim_evoked, forward_surf_ori, noise_cov,
                                  n_dipoles=n_dipoles, return_residual=True)
    _check_dipoles(dipoles, forward_fixed, stc, evoked, residual)

run_tests_if_main()