1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Andrew Dykstra <andrew.r.dykstra@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)
import os
import os.path as op
import numpy as np
from scipy import sparse
from ..externals.six import string_types
from ..utils import verbose, logger, warn, copy_function_doc_to_method_doc
from ..io.compensator import get_current_comp
from ..io.constants import FIFF
from ..io.meas_info import anonymize_info
from ..io.pick import (channel_type, pick_info, pick_types,
_check_excludes_includes, _PICK_TYPES_KEYS)
def _get_meg_system(info):
"""Educated guess for the helmet type based on channels"""
system = '306m'
for ch in info['chs']:
if ch['kind'] == FIFF.FIFFV_MEG_CH:
# Only take first 16 bits, as higher bits store CTF grad comp order
coil_type = ch['coil_type'] & 0xFFFF
if coil_type == FIFF.FIFFV_COIL_NM_122:
system = '122m'
break
elif coil_type // 1000 == 3: # All Vectorview coils are 30xx
system = '306m'
break
elif (coil_type == FIFF.FIFFV_COIL_MAGNES_MAG or
coil_type == FIFF.FIFFV_COIL_MAGNES_GRAD):
nmag = np.sum([c['kind'] == FIFF.FIFFV_MEG_CH
for c in info['chs']])
system = 'Magnes_3600wh' if nmag > 150 else 'Magnes_2500wh'
break
elif coil_type == FIFF.FIFFV_COIL_CTF_GRAD:
system = 'CTF_275'
break
elif coil_type == FIFF.FIFFV_COIL_KIT_GRAD:
system = 'KIT'
break
elif coil_type == FIFF.FIFFV_COIL_BABY_GRAD:
system = 'BabySQUID'
break
return system
def _contains_ch_type(info, ch_type):
"""Check whether a certain channel type is in an info object
Parameters
---------
info : instance of Info
The measurement information.
ch_type : str
the channel type to be checked for
Returns
-------
has_ch_type : bool
Whether the channel type is present or not.
"""
if not isinstance(ch_type, string_types):
raise ValueError('`ch_type` is of class {actual_class}. It must be '
'`str`'.format(actual_class=type(ch_type)))
meg_extras = ['mag', 'grad', 'planar1', 'planar2']
fnirs_extras = ['hbo', 'hbr']
valid_channel_types = sorted([key for key in _PICK_TYPES_KEYS
if key != 'meg'] + meg_extras + fnirs_extras)
if ch_type not in valid_channel_types:
raise ValueError('ch_type must be one of %s, not "%s"'
% (valid_channel_types, ch_type))
if info is None:
raise ValueError('Cannot check for channels of type "%s" because info '
'is None' % (ch_type,))
return ch_type in [channel_type(info, ii) for ii in range(info['nchan'])]
def _get_ch_type(inst, ch_type):
"""Helper to choose a single channel type (usually for plotting)
Usually used in plotting to plot a single datatype, e.g. look for mags,
then grads, then ... to plot.
"""
if ch_type is None:
for type_ in ['mag', 'grad', 'planar1', 'planar2', 'eeg']:
if type_ in inst:
ch_type = type_
break
else:
raise RuntimeError('No plottable channel types found')
return ch_type
@verbose
def equalize_channels(candidates, verbose=None):
"""Equalize channel picks for a collection of MNE-Python objects
Parameters
----------
candidates : list
list Raw | Epochs | Evoked | AverageTFR
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Notes
-----
This function operates inplace.
"""
from ..io.base import _BaseRaw
from ..epochs import _BaseEpochs
from ..evoked import Evoked
from ..time_frequency import AverageTFR
if not all(isinstance(c, (_BaseRaw, _BaseEpochs, Evoked, AverageTFR))
for c in candidates):
valid = ['Raw', 'Epochs', 'Evoked', 'AverageTFR']
raise ValueError('candidates must be ' + ' or '.join(valid))
chan_max_idx = np.argmax([c.info['nchan'] for c in candidates])
chan_template = candidates[chan_max_idx].ch_names
logger.info('Identiying common channels ...')
channels = [set(c.ch_names) for c in candidates]
common_channels = set(chan_template).intersection(*channels)
dropped = list()
for c in candidates:
drop_them = list(set(c.ch_names) - common_channels)
if drop_them:
c.drop_channels(drop_them)
dropped.extend(drop_them)
if dropped:
dropped = list(set(dropped))
logger.info('Dropped the following channels:\n%s' % dropped)
else:
logger.info('all channels are corresponding, nothing to do.')
class ContainsMixin(object):
"""Mixin class for Raw, Evoked, Epochs
"""
def __contains__(self, ch_type):
"""Check channel type membership
Parameters
----------
ch_type : str
Channel type to check for. Can be e.g. 'meg', 'eeg', 'stim', etc.
Returns
-------
in : bool
Whether or not the instance contains the given channel type.
Examples
--------
Channel type membership can be tested as::
>>> 'meg' in inst # doctest: +SKIP
True
>>> 'seeg' in inst # doctest: +SKIP
False
"""
if ch_type == 'meg':
has_ch_type = (_contains_ch_type(self.info, 'mag') or
_contains_ch_type(self.info, 'grad'))
else:
has_ch_type = _contains_ch_type(self.info, ch_type)
return has_ch_type
@property
def compensation_grade(self):
"""The current gradient compensation grade"""
return get_current_comp(self.info)
# XXX Eventually de-duplicate with _kind_dict of mne/io/meas_info.py
_human2fiff = {'ecg': FIFF.FIFFV_ECG_CH,
'eeg': FIFF.FIFFV_EEG_CH,
'emg': FIFF.FIFFV_EMG_CH,
'eog': FIFF.FIFFV_EOG_CH,
'exci': FIFF.FIFFV_EXCI_CH,
'ias': FIFF.FIFFV_IAS_CH,
'misc': FIFF.FIFFV_MISC_CH,
'resp': FIFF.FIFFV_RESP_CH,
'seeg': FIFF.FIFFV_SEEG_CH,
'stim': FIFF.FIFFV_STIM_CH,
'syst': FIFF.FIFFV_SYST_CH,
'bio': FIFF.FIFFV_BIO_CH,
'ecog': FIFF.FIFFV_ECOG_CH,
'hbo': FIFF.FIFFV_FNIRS_CH,
'hbr': FIFF.FIFFV_FNIRS_CH}
_human2unit = {'ecg': FIFF.FIFF_UNIT_V,
'eeg': FIFF.FIFF_UNIT_V,
'emg': FIFF.FIFF_UNIT_V,
'eog': FIFF.FIFF_UNIT_V,
'exci': FIFF.FIFF_UNIT_NONE,
'ias': FIFF.FIFF_UNIT_NONE,
'misc': FIFF.FIFF_UNIT_V,
'resp': FIFF.FIFF_UNIT_NONE,
'seeg': FIFF.FIFF_UNIT_V,
'stim': FIFF.FIFF_UNIT_NONE,
'syst': FIFF.FIFF_UNIT_NONE,
'bio': FIFF.FIFF_UNIT_V,
'ecog': FIFF.FIFF_UNIT_V,
'hbo': FIFF.FIFF_UNIT_MOL,
'hbr': FIFF.FIFF_UNIT_MOL}
_unit2human = {FIFF.FIFF_UNIT_V: 'V',
FIFF.FIFF_UNIT_T: 'T',
FIFF.FIFF_UNIT_T_M: 'T/m',
FIFF.FIFF_UNIT_MOL: 'M',
FIFF.FIFF_UNIT_NONE: 'NA'}
def _check_set(ch, projs, ch_type):
"""Helper to make sure type change is compatible with projectors"""
new_kind = _human2fiff[ch_type]
if ch['kind'] != new_kind:
for proj in projs:
if ch['ch_name'] in proj['data']['col_names']:
raise RuntimeError('Cannot change channel type for channel %s '
'in projector "%s"'
% (ch['ch_name'], proj['desc']))
ch['kind'] = new_kind
class SetChannelsMixin(object):
"""Mixin class for Raw, Evoked, Epochs."""
def set_eeg_reference(self, ref_channels=None):
"""Rereference EEG channels to new reference channel(s).
If multiple reference channels are specified, they will be averaged. If
no reference channels are specified, an average reference will be
applied.
Parameters
----------
ref_channels : list of str | None
The names of the channels to use to construct the reference. If
None (default), an average reference will be added as an SSP
projector but not immediately applied to the data. If an empty list
is specified, the data is assumed to already have a proper
reference and MNE will not attempt any re-referencing of the data.
Defaults to an average reference (None).
Returns
-------
inst : instance of Raw | Epochs | Evoked
Data with EEG channels re-referenced. For ``ref_channels=None``,
an average projector will be added instead of directly subtarcting
data.
Notes
-----
1. If a reference is requested that is not the average reference, this
function removes any pre-existing average reference projections.
2. During source localization, the EEG signal should have an average
reference.
3. In order to apply a reference other than an average reference, the
data must be preloaded.
.. versionadded:: 0.13.0
See Also
--------
mne.set_bipolar_reference
"""
from ..io.reference import set_eeg_reference
return set_eeg_reference(self, ref_channels, copy=False)[0]
def _get_channel_positions(self, picks=None):
"""Gets channel locations from info
Parameters
----------
picks : array-like of int | None
Indices of channels to include. If None (default), all meg and eeg
channels that are available are returned (bad channels excluded).
Notes
-----
.. versionadded:: 0.9.0
"""
if picks is None:
picks = pick_types(self.info, meg=True, eeg=True)
chs = self.info['chs']
pos = np.array([chs[k]['loc'][:3] for k in picks])
n_zero = np.sum(np.sum(np.abs(pos), axis=1) == 0)
if n_zero > 1: # XXX some systems have origin (0, 0, 0)
raise ValueError('Could not extract channel positions for '
'{} channels'.format(n_zero))
return pos
def _set_channel_positions(self, pos, names):
"""Update channel locations in info
Parameters
----------
pos : array-like | np.ndarray, shape (n_points, 3)
The channel positions to be set.
names : list of str
The names of the channels to be set.
Notes
-----
.. versionadded:: 0.9.0
"""
if len(pos) != len(names):
raise ValueError('Number of channel positions not equal to '
'the number of names given.')
pos = np.asarray(pos, dtype=np.float)
if pos.shape[-1] != 3 or pos.ndim != 2:
msg = ('Channel positions must have the shape (n_points, 3) '
'not %s.' % (pos.shape,))
raise ValueError(msg)
for name, p in zip(names, pos):
if name in self.ch_names:
idx = self.ch_names.index(name)
self.info['chs'][idx]['loc'][:3] = p
else:
msg = ('%s was not found in the info. Cannot be updated.'
% name)
raise ValueError(msg)
def set_channel_types(self, mapping):
"""Define the sensor type of channels.
Note: The following sensor types are accepted:
ecg, eeg, emg, eog, exci, ias, misc, resp, seeg, stim, syst, ecog,
hbo, hbr
Parameters
----------
mapping : dict
a dictionary mapping a channel to a sensor type (str)
{'EEG061': 'eog'}.
Notes
-----
.. versionadded:: 0.9.0
"""
ch_names = self.info['ch_names']
# first check and assemble clean mappings of index and name
for ch_name, ch_type in mapping.items():
if ch_name not in ch_names:
raise ValueError("This channel name (%s) doesn't exist in "
"info." % ch_name)
c_ind = ch_names.index(ch_name)
if ch_type not in _human2fiff:
raise ValueError('This function cannot change to this '
'channel type: %s. Accepted channel types '
'are %s.'
% (ch_type,
", ".join(sorted(_human2unit.keys()))))
# Set sensor type
_check_set(self.info['chs'][c_ind], self.info['projs'], ch_type)
unit_old = self.info['chs'][c_ind]['unit']
unit_new = _human2unit[ch_type]
if unit_old not in _unit2human:
raise ValueError("Channel '%s' has unknown unit (%s). Please "
"fix the measurement info of your data."
% (ch_name, unit_old))
if unit_old != _human2unit[ch_type]:
warn("The unit for channel %s has changed from %s to %s."
% (ch_name, _unit2human[unit_old], _unit2human[unit_new]))
self.info['chs'][c_ind]['unit'] = _human2unit[ch_type]
if ch_type in ['eeg', 'seeg', 'ecog']:
coil_type = FIFF.FIFFV_COIL_EEG
elif ch_type == 'hbo':
coil_type = FIFF.FIFFV_COIL_FNIRS_HBO
elif ch_type == 'hbr':
coil_type = FIFF.FIFFV_COIL_FNIRS_HBR
else:
coil_type = FIFF.FIFFV_COIL_NONE
self.info['chs'][c_ind]['coil_type'] = coil_type
def rename_channels(self, mapping):
"""Rename channels.
Parameters
----------
mapping : dict | callable
a dictionary mapping the old channel to a new channel name
e.g. {'EEG061' : 'EEG161'}. Can also be a callable function
that takes and returns a string (new in version 0.10.0).
Notes
-----
.. versionadded:: 0.9.0
"""
rename_channels(self.info, mapping)
@verbose
def set_montage(self, montage, verbose=None):
"""Set EEG sensor configuration
Parameters
----------
montage : instance of Montage or DigMontage
The montage to use.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Notes
-----
Operates in place.
.. versionadded:: 0.9.0
"""
from .montage import _set_montage
_set_montage(self.info, montage)
def plot_sensors(self, kind='topomap', ch_type=None, title=None,
show_names=False, ch_groups=None, axes=None, block=False,
show=True):
"""
Plot sensors positions.
Parameters
----------
kind : str
Whether to plot the sensors as 3d, topomap or as an interactive
sensor selection dialog. Available options 'topomap', '3d',
'select'. If 'select', a set of channels can be selected
interactively by using lasso selector or clicking while holding
control key. The selected channels are returned along with the
figure instance. Defaults to 'topomap'.
ch_type : None | str
The channel type to plot. Available options 'mag', 'grad', 'eeg',
'seeg', 'ecog', 'all'. If ``'all'``, all the available mag, grad,
eeg, seeg and ecog channels are plotted. If None (default), then
channels are chosen in the order given above.
title : str | None
Title for the figure. If None (default), equals to ``'Sensor
positions (%s)' % ch_type``.
show_names : bool
Whether to display all channel names. Defaults to False.
ch_groups : 'position' | array of shape (ch_groups, picks) | None
Channel groups for coloring the sensors. If None (default), default
coloring scheme is used. If 'position', the sensors are divided
into 8 regions. See ``order`` kwarg of :func:`mne.viz.plot_raw`. If
array, the channels are divided by picks given in the array.
.. versionadded:: 0.13.0
axes : instance of Axes | instance of Axes3D | None
Axes to draw the sensors to. If ``kind='3d'``, axes must be an
instance of Axes3D. If None (default), a new axes will be created.
.. versionadded:: 0.13.0
block : bool
Whether to halt program execution until the figure is closed.
Defaults to False.
.. versionadded:: 0.13.0
show : bool
Show figure if True. Defaults to True.
Returns
-------
fig : instance of matplotlib figure
Figure containing the sensor topography.
selection : list
A list of selected channels. Only returned if ``kind=='select'``.
See Also
--------
mne.viz.plot_layout
Notes
-----
This function plots the sensor locations from the info structure using
matplotlib. For drawing the sensors using mayavi see
:func:`mne.viz.plot_trans`.
.. versionadded:: 0.12.0
"""
from ..viz.utils import plot_sensors
return plot_sensors(self.info, kind=kind, ch_type=ch_type, title=title,
show_names=show_names, ch_groups=ch_groups,
axes=axes, block=block, show=show)
@copy_function_doc_to_method_doc(anonymize_info)
def anonymize(self):
"""
.. versionadded:: 0.13.0
"""
anonymize_info(self.info)
return self
class UpdateChannelsMixin(object):
"""Mixin class for Raw, Evoked, Epochs, AverageTFR
"""
def pick_types(self, meg=True, eeg=False, stim=False, eog=False,
ecg=False, emg=False, ref_meg='auto', misc=False,
resp=False, chpi=False, exci=False, ias=False, syst=False,
seeg=False, dipole=False, gof=False, bio=False, ecog=False,
fnirs=False, include=[], exclude='bads', selection=None):
"""Pick some channels by type and names
Parameters
----------
meg : bool | str
If True include all MEG channels. If False include None
If string it can be 'mag', 'grad', 'planar1' or 'planar2' to select
only magnetometers, all gradiometers, or a specific type of
gradiometer.
eeg : bool
If True include EEG channels.
stim : bool
If True include stimulus channels.
eog : bool
If True include EOG channels.
ecg : bool
If True include ECG channels.
emg : bool
If True include EMG channels.
ref_meg: bool | str
If True include CTF / 4D reference channels. If 'auto', the
reference channels are only included if compensations are present.
misc : bool
If True include miscellaneous analog channels.
resp : bool
If True include response-trigger channel. For some MEG systems this
is separate from the stim channel.
chpi : bool
If True include continuous HPI coil channels.
exci : bool
Flux excitation channel used to be a stimulus channel.
ias : bool
Internal Active Shielding data (maybe on Triux only).
syst : bool
System status channel information (on Triux systems only).
seeg : bool
Stereotactic EEG channels.
dipole : bool
Dipole time course channels.
gof : bool
Dipole goodness of fit channels.
bio : bool
Bio channels.
ecog : bool
Electrocorticography channels.
fnirs : bool | str
Functional near-infrared spectroscopy channels. If True include all
fNIRS channels. If False (default) include none. If string it can
be 'hbo' (to include channels measuring oxyhemoglobin) or 'hbr' (to
include channels measuring deoxyhemoglobin).
include : list of string
List of additional channels to include. If empty do not include
any.
exclude : list of string | str
List of channels to exclude. If 'bads' (default), exclude channels
in ``info['bads']``.
selection : list of string
Restrict sensor channels (MEG, EEG) to this list of channel names.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
Notes
-----
.. versionadded:: 0.9.0
"""
idx = pick_types(
self.info, meg=meg, eeg=eeg, stim=stim, eog=eog, ecg=ecg, emg=emg,
ref_meg=ref_meg, misc=misc, resp=resp, chpi=chpi, exci=exci,
ias=ias, syst=syst, seeg=seeg, dipole=dipole, gof=gof, bio=bio,
ecog=ecog, fnirs=fnirs, include=include, exclude=exclude,
selection=selection)
self._pick_drop_channels(idx)
return self
def pick_channels(self, ch_names):
"""Pick some channels
Parameters
----------
ch_names : list
The list of channels to select.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
drop_channels
Notes
-----
.. versionadded:: 0.9.0
"""
_check_excludes_includes(ch_names)
idx = [self.ch_names.index(c) for c in ch_names if c in self.ch_names]
self._pick_drop_channels(idx)
return self
def drop_channels(self, ch_names):
"""Drop some channels
Parameters
----------
ch_names : list
List of the names of the channels to remove.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
pick_channels
Notes
-----
.. versionadded:: 0.9.0
"""
msg = ("'ch_names' should be a list of strings (the name[s] of the "
"channel to be dropped), not a {0}.")
if isinstance(ch_names, string_types):
raise ValueError(msg.format("string"))
else:
if not all([isinstance(ch_name, string_types)
for ch_name in ch_names]):
raise ValueError(msg.format(type(ch_names[0])))
missing = [ch_name for ch_name in ch_names
if ch_name not in self.ch_names]
if len(missing) > 0:
msg = "Channel(s) {0} not found, nothing dropped."
raise ValueError(msg.format(", ".join(missing)))
bad_idx = [self.ch_names.index(ch_name) for ch_name in ch_names
if ch_name in self.ch_names]
idx = np.setdiff1d(np.arange(len(self.ch_names)), bad_idx)
self._pick_drop_channels(idx)
return self
def _pick_drop_channels(self, idx):
# avoid circular imports
from ..io.base import _BaseRaw
from ..epochs import _BaseEpochs
from ..evoked import Evoked
from ..time_frequency import AverageTFR
if isinstance(self, (_BaseRaw, _BaseEpochs)):
if not self.preload:
raise RuntimeError('If Raw or Epochs, data must be preloaded '
'to drop or pick channels')
def inst_has(attr):
return getattr(self, attr, None) is not None
if inst_has('picks'):
self.picks = self.picks[idx]
if inst_has('_cals'):
self._cals = self._cals[idx]
pick_info(self.info, idx, copy=False)
if inst_has('_projector'):
self._projector = self._projector[idx][:, idx]
if isinstance(self, _BaseRaw) and inst_has('_data'):
self._data = self._data.take(idx, axis=0)
elif isinstance(self, _BaseEpochs) and inst_has('_data'):
self._data = self._data.take(idx, axis=1)
elif isinstance(self, AverageTFR) and inst_has('data'):
self.data = self.data.take(idx, axis=0)
elif isinstance(self, Evoked):
self.data = self.data.take(idx, axis=0)
def add_channels(self, add_list, force_update_info=False):
"""Append new channels to the instance.
Parameters
----------
add_list : list
A list of objects to append to self. Must contain all the same
type as the current object
force_update_info : bool
If True, force the info for objects to be appended to match the
values in `self`. This should generally only be used when adding
stim channels for which important metadata won't be overwritten.
.. versionadded:: 0.12
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
"""
# avoid circular imports
from ..io import _BaseRaw, _merge_info
from ..epochs import _BaseEpochs
if not isinstance(add_list, (list, tuple)):
raise AssertionError('Input must be a list or tuple of objs')
# Object-specific checks
if isinstance(self, (_BaseRaw, _BaseEpochs)):
if not all([inst.preload for inst in add_list] + [self.preload]):
raise AssertionError('All data must be preloaded')
data_name = '_data'
if isinstance(self, _BaseRaw):
con_axis = 0
comp_class = _BaseRaw
elif isinstance(self, _BaseEpochs):
con_axis = 1
comp_class = _BaseEpochs
else:
data_name = 'data'
con_axis = 0
comp_class = type(self)
if not all(isinstance(inst, comp_class) for inst in add_list):
raise AssertionError('All input data must be of same type')
data = [getattr(inst, data_name) for inst in [self] + add_list]
# Make sure that all dimensions other than channel axis are the same
compare_axes = [i for i in range(data[0].ndim) if i != con_axis]
shapes = np.array([dat.shape for dat in data])[:, compare_axes]
if not ((shapes[0] - shapes) == 0).all():
raise AssertionError('All dimensions except channels must match')
# Create final data / info objects
data = np.concatenate(data, axis=con_axis)
infos = [self.info] + [inst.info for inst in add_list]
new_info = _merge_info(infos, force_update_to_first=force_update_info)
# Now update the attributes
setattr(self, data_name, data)
self.info = new_info
if isinstance(self, _BaseRaw):
self._cals = np.concatenate([getattr(inst, '_cals')
for inst in [self] + add_list])
return self
class InterpolationMixin(object):
"""Mixin class for Raw, Evoked, Epochs
"""
def interpolate_bads(self, reset_bads=True, mode='accurate'):
"""Interpolate bad MEG and EEG channels.
Operates in place.
Parameters
----------
reset_bads : bool
If True, remove the bads from info.
mode : str
Either `'accurate'` or `'fast'`, determines the quality of the
Legendre polynomial expansion used for interpolation of MEG
channels.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
Notes
-----
.. versionadded:: 0.9.0
"""
from .interpolation import _interpolate_bads_eeg, _interpolate_bads_meg
if getattr(self, 'preload', None) is False:
raise ValueError('Data must be preloaded.')
_interpolate_bads_eeg(self)
_interpolate_bads_meg(self, mode=mode)
if reset_bads is True:
self.info['bads'] = []
return self
def rename_channels(info, mapping):
"""Rename channels.
Parameters
----------
info : dict
Measurement info.
mapping : dict | callable
a dictionary mapping the old channel to a new channel name
e.g. {'EEG061' : 'EEG161'}. Can also be a callable function
that takes and returns a string (new in version 0.10.0).
"""
info._check_consistency()
bads = list(info['bads']) # make our own local copies
ch_names = list(info['ch_names'])
# first check and assemble clean mappings of index and name
if isinstance(mapping, dict):
orig_names = sorted(list(mapping.keys()))
missing = [orig_name not in ch_names for orig_name in orig_names]
if any(missing):
raise ValueError("Channel name(s) in mapping missing from info: "
"%s" % np.array(orig_names)[np.array(missing)])
new_names = [(ch_names.index(ch_name), new_name)
for ch_name, new_name in mapping.items()]
elif callable(mapping):
new_names = [(ci, mapping(ch_name))
for ci, ch_name in enumerate(ch_names)]
else:
raise ValueError('mapping must be callable or dict, not %s'
% (type(mapping),))
# check we got all strings out of the mapping
if any(not isinstance(new_name[1], string_types)
for new_name in new_names):
raise ValueError('New channel mapping must only be to strings')
# do the remapping locally
for c_ind, new_name in new_names:
for bi, bad in enumerate(bads):
if bad == ch_names[c_ind]:
bads[bi] = new_name
ch_names[c_ind] = new_name
# check that all the channel names are unique
if len(ch_names) != len(np.unique(ch_names)):
raise ValueError('New channel names are not unique, renaming failed')
# do the reampping in info
info['bads'] = bads
for ch, ch_name in zip(info['chs'], ch_names):
ch['ch_name'] = ch_name
info._update_redundant()
info._check_consistency()
def _recursive_flatten(cell, dtype):
"""Helper to unpack mat files in Python"""
while not isinstance(cell[0], dtype):
cell = [c for d in cell for c in d]
return cell
def read_ch_connectivity(fname, picks=None):
"""Parse FieldTrip neighbors .mat file
More information on these neighbor definitions can be found on the
related FieldTrip documentation pages:
http://fieldtrip.fcdonders.nl/template/neighbours
Parameters
----------
fname : str
The file name. Example: 'neuromag306mag', 'neuromag306planar',
'ctf275', 'biosemi64', etc.
picks : array-like of int, shape (n_channels,)
The indices of the channels to include. Must match the template.
Defaults to None.
Returns
-------
ch_connectivity : scipy.sparse matrix
The connectivity matrix.
ch_names : list
The list of channel names present in connectivity matrix.
"""
from scipy.io import loadmat
if not op.isabs(fname):
templates_dir = op.realpath(op.join(op.dirname(__file__),
'data', 'neighbors'))
templates = os.listdir(templates_dir)
for f in templates:
if f == fname:
break
if f == fname + '_neighb.mat':
fname += '_neighb.mat'
break
else:
raise ValueError('I do not know about this neighbor '
'template: "{}"'.format(fname))
fname = op.join(templates_dir, fname)
nb = loadmat(fname)['neighbours']
ch_names = _recursive_flatten(nb['label'], string_types)
neighbors = [_recursive_flatten(c, string_types) for c in
nb['neighblabel'].flatten()]
assert len(ch_names) == len(neighbors)
if picks is not None:
if max(picks) >= len(ch_names):
raise ValueError('The picks must be compatible with '
'channels. Found a pick ({}) which exceeds '
'the channel range ({})'
.format(max(picks), len(ch_names)))
connectivity = _ch_neighbor_connectivity(ch_names, neighbors)
if picks is not None:
# picking before constructing matrix is buggy
connectivity = connectivity[picks][:, picks]
ch_names = [ch_names[p] for p in picks]
return connectivity, ch_names
def _ch_neighbor_connectivity(ch_names, neighbors):
"""Compute sensor connectivity matrix
Parameters
----------
ch_names : list of str
The channel names.
neighbors : list of list
A list of list of channel names. The neighbors to
which the channels in ch_names are connected with.
Must be of the same length as ch_names.
Returns
-------
ch_connectivity : scipy.sparse matrix
The connectivity matrix.
"""
if len(ch_names) != len(neighbors):
raise ValueError('`ch_names` and `neighbors` must '
'have the same length')
set_neighbors = set([c for d in neighbors for c in d])
rest = set(ch_names) - set_neighbors
if len(rest) > 0:
raise ValueError('Some of your neighbors are not present in the '
'list of channel names')
for neigh in neighbors:
if (not isinstance(neigh, list) and
not all(isinstance(c, string_types) for c in neigh)):
raise ValueError('`neighbors` must be a list of lists of str')
ch_connectivity = np.eye(len(ch_names), dtype=bool)
for ii, neigbs in enumerate(neighbors):
ch_connectivity[ii, [ch_names.index(i) for i in neigbs]] = True
ch_connectivity = sparse.csr_matrix(ch_connectivity)
return ch_connectivity
def fix_mag_coil_types(info):
"""Fix magnetometer coil types
Parameters
----------
info : dict
The info dict to correct. Corrections are done in-place.
Notes
-----
This function changes magnetometer coil types 3022 (T1: SQ20483N) and
3023 (T2: SQ20483-A) to 3024 (T3: SQ20950N) in the channel definition
records in the info structure.
Neuromag Vectorview systems can contain magnetometers with two
different coil sizes (3022 and 3023 vs. 3024). The systems
incorporating coils of type 3024 were introduced last and are used at
the majority of MEG sites. At some sites with 3024 magnetometers,
the data files have still defined the magnetometers to be of type
3022 to ensure compatibility with older versions of Neuromag software.
In the MNE software as well as in the present version of Neuromag
software coil type 3024 is fully supported. Therefore, it is now safe
to upgrade the data files to use the true coil type.
.. note:: The effect of the difference between the coil sizes on the
current estimates computed by the MNE software is very small.
Therefore the use of mne_fix_mag_coil_types is not mandatory.
"""
old_mag_inds = _get_T1T2_mag_inds(info)
for ii in old_mag_inds:
info['chs'][ii]['coil_type'] = FIFF.FIFFV_COIL_VV_MAG_T3
logger.info('%d of %d T1/T2 magnetometer types replaced with T3.' %
(len(old_mag_inds), len(pick_types(info, meg='mag'))))
info._check_consistency()
def _get_T1T2_mag_inds(info):
"""Helper to find T1/T2 magnetometer coil types"""
picks = pick_types(info, meg='mag')
old_mag_inds = []
for ii in picks:
ch = info['chs'][ii]
if ch['coil_type'] in (FIFF.FIFFV_COIL_VV_MAG_T1,
FIFF.FIFFV_COIL_VV_MAG_T2):
old_mag_inds.append(ii)
return old_mag_inds
|