1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Marijn van Vliet <w.m.vanvliet@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
# Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: Simplified BSD
from collections import Iterable
import os
import os.path as op
import numpy as np
from ..viz import plot_montage
from .channels import _contains_ch_type
from ..transforms import (_sphere_to_cartesian, apply_trans,
get_ras_to_neuromag_trans, _topo_to_sphere,
_str_to_frame, _frame_to_str)
from ..io.meas_info import _make_dig_points, _read_dig_points, _read_dig_fif
from ..io.pick import pick_types
from ..io.open import fiff_open
from ..io.constants import FIFF
from ..utils import _check_fname, warn
from ..externals.six import string_types
from ..externals.six.moves import map
class Montage(object):
"""Montage for EEG cap
Montages are typically loaded from a file using read_montage. Only use this
class directly if you're constructing a new montage.
Parameters
----------
pos : array, shape (n_channels, 3)
The positions of the channels in 3d.
ch_names : list
The channel names.
kind : str
The type of montage (e.g. 'standard_1005').
selection : array of int
The indices of the selected channels in the montage file.
Notes
-----
.. versionadded:: 0.9.0
"""
def __init__(self, pos, ch_names, kind, selection):
self.pos = pos
self.ch_names = ch_names
self.kind = kind
self.selection = selection
def __repr__(self):
s = ('<Montage | %s - %d channels: %s ...>'
% (self.kind, len(self.ch_names), ', '.join(self.ch_names[:3])))
return s
def plot(self, scale_factor=1.5, show_names=False):
"""Plot EEG sensor montage
Parameters
----------
scale_factor : float
Determines the size of the points. Defaults to 1.5
show_names : bool
Whether to show the channel names. Defaults to False
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure object.
"""
return plot_montage(self, scale_factor=scale_factor,
show_names=show_names)
def read_montage(kind, ch_names=None, path=None, unit='m', transform=False):
"""Read a generic (built-in) montage from a file
This function can be used to read electrode positions from a user specified
file using the `kind` and `path` parameters. Alternatively, use only the
`kind` parameter to load one of the built-in montages:
=================== =====================================================
Kind description
=================== =====================================================
standard_1005 Electrodes are named and positioned according to the
international 10-05 system.
standard_1020 Electrodes are named and positioned according to the
international 10-20 system.
standard_alphabetic Electrodes are named with LETTER-NUMBER combinations
(A1, B2, F4, etc.)
standard_postfixed Electrodes are named according to the international
10-20 system using postfixes for intermediate
positions.
standard_prefixed Electrodes are named according to the international
10-20 system using prefixes for intermediate
positions.
standard_primed Electrodes are named according to the international
10-20 system using prime marks (' and '') for
intermediate positions.
biosemi16 BioSemi cap with 16 electrodes
biosemi32 BioSemi cap with 32 electrodes
biosemi64 BioSemi cap with 64 electrodes
biosemi128 BioSemi cap with 128 electrodes
biosemi160 BioSemi cap with 160 electrodes
biosemi256 BioSemi cap with 256 electrodes
easycap-M10 Brainproducts EasyCap with electrodes named
according to the 10-05 system
easycap-M1 Brainproduct EasyCap with numbered electrodes
EGI_256 Geodesic Sensor Net with 256 channels
GSN-HydroCel-32 HydroCel Geodesic Sensor Net with 32 electrodes
GSN-HydroCel-64_1.0 HydroCel Geodesic Sensor Net with 64 electrodes
GSN-HydroCel-65_1.0 HydroCel Geodesic Sensor Net with 64 electrodes + Cz
GSN-HydroCel-128 HydroCel Geodesic Sensor Net with 128 electrodes
GSN-HydroCel-129 HydroCel Geodesic Sensor Net with 128 electrodes + Cz
GSN-HydroCel-256 HydroCel Geodesic Sensor Net with 256 electrodes
GSN-HydroCel-257 HydroCel Geodesic Sensor Net with 256 electrodes + Cz
=================== =====================================================
Parameters
----------
kind : str
The name of the montage file without the file extension (e.g.
kind='easycap-M10' for 'easycap-M10.txt'). Files with extensions
'.elc', '.txt', '.csd', '.elp', '.hpts', '.sfp' or '.loc' ('.locs' and
'.eloc') are supported.
ch_names : list of str | None
If not all electrodes defined in the montage are present in the EEG
data, use this parameter to select subset of electrode positions to
load. If None (default), all defined electrode positions are returned.
path : str | None
The path of the folder containing the montage file. Defaults to the
mne/channels/data/montages folder in your mne-python installation.
unit : 'm' | 'cm' | 'mm'
Unit of the input file. If not 'm' (default), coordinates will be
rescaled to 'm'.
transform : bool
If True, points will be transformed to Neuromag space.
The fidicuals, 'nasion', 'lpa', 'rpa' must be specified in
the montage file. Useful for points captured using Polhemus FastSCAN.
Default is False.
Returns
-------
montage : instance of Montage
The montage.
See Also
--------
read_dig_montage : To read subject-specific digitization information.
Notes
-----
Built-in montages are not scaled or transformed by default.
Montages can contain fiducial points in addition to electrode
locations, e.g. ``biosemi-64`` contains 67 total channels.
.. versionadded:: 0.9.0
"""
if path is None:
path = op.join(op.dirname(__file__), 'data', 'montages')
if not op.isabs(kind):
supported = ('.elc', '.txt', '.csd', '.sfp', '.elp', '.hpts', '.loc',
'.locs', '.eloc')
montages = [op.splitext(f) for f in os.listdir(path)]
montages = [m for m in montages if m[1] in supported and kind == m[0]]
if len(montages) != 1:
raise ValueError('Could not find the montage. Please provide the '
'full path.')
kind, ext = montages[0]
fname = op.join(path, kind + ext)
else:
kind, ext = op.splitext(kind)
fname = op.join(path, kind + ext)
if ext == '.sfp':
# EGI geodesic
with open(fname, 'r') as f:
lines = f.read().replace('\t', ' ').splitlines()
ch_names_, pos = [], []
for ii, line in enumerate(lines):
line = line.strip().split()
if len(line) > 0: # skip empty lines
if len(line) != 4: # name, x, y, z
raise ValueError("Malformed .sfp file in line " + str(ii))
this_name, x, y, z = line
ch_names_.append(this_name)
pos.append([float(cord) for cord in (x, y, z)])
pos = np.asarray(pos)
elif ext == '.elc':
# 10-5 system
ch_names_ = []
pos = []
with open(fname) as fid:
# Default units are meters
for line in fid:
if 'UnitPosition' in line:
units = line.split()[1]
scale_factor = dict(m=1., mm=1e-3)[units]
break
else:
raise RuntimeError('Could not detect units in file %s' % fname)
for line in fid:
if 'Positions\n' in line:
break
pos = []
for line in fid:
if 'Labels\n' in line:
break
pos.append(list(map(float, line.split())))
for line in fid:
if not line or not set(line) - set([' ']):
break
ch_names_.append(line.strip(' ').strip('\n'))
pos = np.array(pos) * scale_factor
elif ext == '.txt':
# easycap
try: # newer version
data = np.genfromtxt(fname, dtype='str', skip_header=1)
except TypeError:
data = np.genfromtxt(fname, dtype='str', skiprows=1)
ch_names_ = list(data[:, 0])
theta, phi = data[:, 1].astype(float), data[:, 2].astype(float)
x = 85. * np.cos(np.deg2rad(phi)) * np.sin(np.deg2rad(theta))
y = 85. * np.sin(np.deg2rad(theta)) * np.sin(np.deg2rad(phi))
z = 85. * np.cos(np.deg2rad(theta))
pos = np.c_[x, y, z]
elif ext == '.csd':
# CSD toolbox
dtype = [('label', 'S4'), ('theta', 'f8'), ('phi', 'f8'),
('radius', 'f8'), ('x', 'f8'), ('y', 'f8'), ('z', 'f8'),
('off_sph', 'f8')]
try: # newer version
table = np.loadtxt(fname, skip_header=2, dtype=dtype)
except TypeError:
table = np.loadtxt(fname, skiprows=2, dtype=dtype)
ch_names_ = table['label']
theta = (2 * np.pi * table['theta']) / 360.
phi = (2 * np.pi * table['phi']) / 360.
pos = _sphere_to_cartesian(theta, phi, r=1.0)
pos = np.asarray(pos).T
elif ext == '.elp':
# standard BESA spherical
dtype = np.dtype('S8, S8, f8, f8, f8')
try:
data = np.loadtxt(fname, dtype=dtype, skip_header=1)
except TypeError:
data = np.loadtxt(fname, dtype=dtype, skiprows=1)
az = data['f2']
horiz = data['f3']
radius = np.abs(az / 180.)
angles = np.array([90. - h if a >= 0. else -90. - h
for h, a in zip(horiz, az)])
sph_phi = (0.5 - radius) * 180.
sph_theta = angles
azimuth = sph_theta / 180.0 * np.pi
elevation = sph_phi / 180.0 * np.pi
r = 85.
y, x, z = _sphere_to_cartesian(azimuth, elevation, r)
pos = np.c_[x, y, z]
ch_names_ = data['f1'].astype(np.str)
elif ext == '.hpts':
# MNE-C specified format for generic digitizer data
dtype = [('type', 'S8'), ('name', 'S8'),
('x', 'f8'), ('y', 'f8'), ('z', 'f8')]
data = np.loadtxt(fname, dtype=dtype)
pos = np.vstack((data['x'], data['y'], data['z'])).T
ch_names_ = data['name'].astype(np.str)
elif ext in ('.loc', '.locs', '.eloc'):
ch_names_ = np.loadtxt(fname, dtype='S4',
usecols=[3]).astype(np.str).tolist()
dtype = {'names': ('angle', 'radius'), 'formats': ('f4', 'f4')}
angle, radius = np.loadtxt(fname, dtype=dtype, usecols=[1, 2],
unpack=True)
sph_phi, sph_theta = _topo_to_sphere(angle, radius)
azimuth = sph_theta / 180.0 * np.pi
elevation = sph_phi / 180.0 * np.pi
r = np.ones((len(ch_names_), ))
x, y, z = _sphere_to_cartesian(azimuth, elevation, r)
pos = np.c_[-y, x, z]
else:
raise ValueError('Currently the "%s" template is not supported.' %
kind)
selection = np.arange(len(pos))
if unit == 'mm':
pos /= 1e3
elif unit == 'cm':
pos /= 1e2
elif unit != 'm':
raise ValueError("'unit' should be either 'm', 'cm', or 'mm'.")
if transform:
names_lower = [name.lower() for name in list(ch_names_)]
if ext == '.hpts':
fids = ('2', '1', '3') # Alternate cardinal point names
else:
fids = ('nz', 'lpa', 'rpa')
missing = [name for name in fids
if name not in names_lower]
if missing:
raise ValueError("The points %s are missing, but are needed "
"to transform the points to the MNE coordinate "
"system. Either add the points, or read the "
"montage with transform=False. " % missing)
nasion = pos[names_lower.index(fids[0])]
lpa = pos[names_lower.index(fids[1])]
rpa = pos[names_lower.index(fids[2])]
neuromag_trans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
pos = apply_trans(neuromag_trans, pos)
if ch_names is not None:
sel, ch_names_ = zip(*[(i, e) for i, e in enumerate(ch_names_)
if e in ch_names])
sel = list(sel)
pos = pos[sel]
selection = selection[sel]
else:
ch_names_ = list(ch_names_)
kind = op.split(kind)[-1]
return Montage(pos=pos, ch_names=ch_names_, kind=kind, selection=selection)
class DigMontage(object):
"""Montage for Digitized data
Montages are typically loaded from a file using read_dig_montage. Only use
this class directly if you're constructing a new montage.
Parameters
----------
hsp : array, shape (n_points, 3)
The positions of the headshape points in 3d.
These points are in the native digitizer space.
hpi : array, shape (n_hpi, 3)
The positions of the head-position indicator coils in 3d.
These points are in the MEG device space.
elp : array, shape (n_hpi, 3)
The positions of the head-position indicator coils in 3d.
This is typically in the native digitizer space.
point_names : list, shape (n_elp)
The names of the digitized points for hpi and elp.
nasion : array, shape (1, 3)
The position of the nasion fidicual point.
lpa : array, shape (1, 3)
The position of the left periauricular fidicual point.
rpa : array, shape (1, 3)
The position of the right periauricular fidicual point.
dev_head_t : array, shape (4, 4)
A Device-to-Head transformation matrix.
dig_ch_pos : dict
Dictionary of channel positions.
.. versionadded:: 0.12
Notes
-----
.. versionadded:: 0.9.0
"""
def __init__(self, hsp, hpi, elp, point_names,
nasion=None, lpa=None, rpa=None, dev_head_t=None,
dig_ch_pos=None):
self.hsp = hsp
self.hpi = hpi
self.elp = elp
self.point_names = point_names
self.nasion = nasion
self.lpa = lpa
self.rpa = rpa
if dev_head_t is None:
self.dev_head_t = np.identity(4)
else:
self.dev_head_t = dev_head_t
self.dig_ch_pos = dig_ch_pos
def __repr__(self):
s = '<DigMontage | %d Dig Points, %d HPI points: %s ...>'
s %= (len(self.hsp), len(self.point_names),
', '.join(self.point_names[:3]))
return s
def plot(self, scale_factor=1.5, show_names=False):
"""Plot EEG sensor montage
Parameters
----------
scale_factor : float
Determines the size of the points. Defaults to 1.5
show_names : bool
Whether to show the channel names. Defaults to False
Returns
-------
fig : Instance of matplotlib.figure.Figure
The figure object.
"""
from ..viz import plot_montage
return plot_montage(self, scale_factor=scale_factor,
show_names=show_names)
_cardinal_ident_mapping = {
FIFF.FIFFV_POINT_NASION: 'nasion',
FIFF.FIFFV_POINT_LPA: 'lpa',
FIFF.FIFFV_POINT_RPA: 'rpa',
}
def _check_frame(d, frame_str):
"""Helper to check coordinate frames"""
if d['coord_frame'] != _str_to_frame[frame_str]:
raise RuntimeError('dig point must be in %s coordinate frame, got %s'
% (frame_str, _frame_to_str[d['coord_frame']]))
def read_dig_montage(hsp=None, hpi=None, elp=None, point_names=None,
unit='auto', fif=None, transform=True, dev_head_t=False):
"""Read subject-specific digitization montage from a file
Parameters
----------
hsp : None | str | array, shape (n_points, 3)
If str, this corresponds to the filename of the headshape points.
This is typically used with the Polhemus FastSCAN system.
If numpy.array, this corresponds to an array of positions of the
headshape points in 3d. These points are assumed to be in the native
digitizer space and will be rescaled according to the unit parameter.
hpi : None | str | array, shape (n_hpi, 3)
If str, this corresponds to the filename of Head Position Indicator
(HPI) points. If numpy.array, this corresponds to an array
of HPI points. These points are in device space.
elp : None | str | array, shape (n_fids + n_hpi, 3)
If str, this corresponds to the filename of electrode position
points. This is typically used with the Polhemus FastSCAN system.
Fiducials should be listed first: nasion, left periauricular point,
right periauricular point, then the points corresponding to the HPI.
If numpy.array, this corresponds to an array of digitizer points in
the same order. These points are assumed to be in the native digitizer
space and will be rescaled according to the unit parameter.
point_names : None | list
If list, this corresponds to a list of point names. This must be
specified if elp is defined.
unit : 'auto' | 'm' | 'cm' | 'mm'
Unit of the digitizer files (hsp and elp). If not 'm', coordinates will
be rescaled to 'm'. Default is 'auto', which assumes 'm' for \*.hsp and
\*.elp files and 'mm' for \*.txt files, corresponding to the known
Polhemus export formats.
fif : str | None
FIF file from which to read digitization locations.
If str (filename), all other arguments are ignored.
.. versionadded:: 0.12
transform : bool
If True, points will be transformed to Neuromag space.
The fidicuals, 'nasion', 'lpa', 'rpa' must be specified in
the montage file. Useful for points captured using Polhemus FastSCAN.
Default is True.
dev_head_t : bool
If True, a Dev-to-Head transformation matrix will be added to the
montage. To get a proper `dev_head_t`, the hpi and the elp points
must be in the same order. If False, an identity matrix will be added
to the montage. Default is False.
Returns
-------
montage : instance of DigMontage
The digitizer montage.
See Also
--------
read_montage : Function to read generic EEG templates
Notes
-----
All digitized points will be transformed to head-based coordinate system
if transform is True and fiducials are present.
.. versionadded:: 0.9.0
"""
if fif is not None:
# Use a different code path
if dev_head_t or not transform:
raise ValueError('transform must be True and dev_head_t must be '
'False for FIF dig montage')
if not all(x is None for x in (hsp, hpi, elp, point_names)):
raise ValueError('hsp, hpi, elp, and point_names must all be None '
'if fif is not None')
_check_fname(fif, overwrite=True, must_exist=True)
# Load the dig data
f, tree = fiff_open(fif)[:2]
with f as fid:
dig = _read_dig_fif(fid, tree)
# Split up the dig points by category
hsp = list()
hpi = list()
elp = list()
point_names = list()
fids = dict()
dig_ch_pos = dict()
for d in dig:
if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
_check_frame(d, 'head')
fids[_cardinal_ident_mapping[d['ident']]] = d['r']
elif d['kind'] == FIFF.FIFFV_POINT_HPI:
_check_frame(d, 'head')
hpi.append(d['r'])
elp.append(d['r'])
point_names.append('HPI%03d' % d['ident'])
elif d['kind'] == FIFF.FIFFV_POINT_EXTRA:
_check_frame(d, 'head')
hsp.append(d['r'])
elif d['kind'] == FIFF.FIFFV_POINT_EEG:
_check_frame(d, 'head')
dig_ch_pos['EEG%03d' % d['ident']] = d['r']
fids = np.array([fids[key] for key in ('nasion', 'lpa', 'rpa')])
hsp = np.array(hsp)
elp = np.array(elp)
else:
dig_ch_pos = None
scale = {'mm': 1e-3, 'cm': 1e-2, 'auto': 1e-3, 'm': None}
if unit not in scale:
raise ValueError("Unit needs to be one of %s, not %r" %
(tuple(map(repr, scale)), unit))
# HSP
if isinstance(hsp, string_types):
hsp = _read_dig_points(hsp, unit=unit)
elif hsp is not None and scale[unit]:
hsp *= scale[unit]
# HPI
if isinstance(hpi, string_types):
ext = op.splitext(hpi)[-1]
if ext == '.txt':
hpi = _read_dig_points(hpi, unit='m')
elif ext in ('.sqd', '.mrk'):
from ..io.kit import read_mrk
hpi = read_mrk(hpi)
else:
raise ValueError('HPI file with extension *%s is not '
'supported. Only *.txt, *.sqd and *.mrk are '
'supported.' % ext)
# ELP
if isinstance(elp, string_types):
elp = _read_dig_points(elp, unit=unit)
elif elp is not None and scale[unit]:
elp *= scale[unit]
if elp is not None:
if not isinstance(point_names, Iterable):
raise TypeError("If elp is specified, point_names must "
"provide a list of str with one entry per ELP "
"point")
point_names = list(point_names)
if len(point_names) != len(elp):
raise ValueError("The elp file contains %i points, but %i "
"names were specified." %
(len(elp), len(point_names)))
# Transform digitizer coordinates to neuromag space
if transform:
if elp is None:
raise ValueError("ELP points are not specified. Points are "
"needed for transformation.")
names_lower = [name.lower() for name in point_names]
# check that all needed points are present
missing = [name for name in ('nasion', 'lpa', 'rpa')
if name not in names_lower]
if missing:
raise ValueError("The points %s are missing, but are needed "
"to transform the points to the MNE "
"coordinate system. Either add the points, "
"or read the montage with transform=False."
% str(missing))
nasion = elp[names_lower.index('nasion')]
lpa = elp[names_lower.index('lpa')]
rpa = elp[names_lower.index('rpa')]
# remove fiducials from elp
mask = np.ones(len(names_lower), dtype=bool)
for fid in ['nasion', 'lpa', 'rpa']:
mask[names_lower.index(fid)] = False
elp = elp[mask]
neuromag_trans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
fids = apply_trans(neuromag_trans, [nasion, lpa, rpa])
elp = apply_trans(neuromag_trans, elp)
hsp = apply_trans(neuromag_trans, hsp)
else:
fids = [None] * 3
if dev_head_t:
from ..coreg import fit_matched_points
trans = fit_matched_points(tgt_pts=elp, src_pts=hpi, out='trans')
else:
trans = np.identity(4)
return DigMontage(hsp, hpi, elp, point_names, fids[0], fids[1], fids[2],
trans, dig_ch_pos)
def _set_montage(info, montage, update_ch_names=False):
"""Apply montage to data.
With a Montage, this function will replace the EEG channel names and
locations with the values specified for the particular montage.
With a DigMontage, this function will replace the digitizer info with
the values specified for the particular montage.
Usually, a montage is expected to contain the positions of all EEG
electrodes and a warning is raised when this is not the case.
Parameters
----------
info : instance of Info
The measurement info to update.
montage : instance of Montage | instance of DigMontage
The montage to apply.
update_ch_names : bool
If True, overwrite the info channel names with the ones from montage.
Notes
-----
This function will change the info variable in place.
"""
if isinstance(montage, Montage):
if update_ch_names:
info['chs'] = list()
for ii, ch_name in enumerate(montage.ch_names):
ch_info = {'cal': 1., 'logno': ii + 1, 'scanno': ii + 1,
'range': 1.0, 'unit_mul': 0, 'ch_name': ch_name,
'unit': FIFF.FIFF_UNIT_V, 'kind': FIFF.FIFFV_EEG_CH,
'coord_frame': FIFF.FIFFV_COORD_HEAD,
'coil_type': FIFF.FIFFV_COIL_EEG}
info['chs'].append(ch_info)
info._update_redundant()
if not _contains_ch_type(info, 'eeg'):
raise ValueError('No EEG channels found.')
sensors_found = []
for pos, ch_name in zip(montage.pos, montage.ch_names):
if ch_name not in info['ch_names']:
continue
ch_idx = info['ch_names'].index(ch_name)
info['chs'][ch_idx]['loc'] = np.r_[pos, [0.] * 9]
sensors_found.append(ch_idx)
if len(sensors_found) == 0:
raise ValueError('None of the sensors defined in the montage were '
'found in the info structure. Check the channel '
'names.')
eeg_sensors = pick_types(info, meg=False, ref_meg=False, eeg=True,
exclude=[])
not_found = np.setdiff1d(eeg_sensors, sensors_found)
if len(not_found) > 0:
not_found_names = [info['ch_names'][ch] for ch in not_found]
warn('The following EEG sensors did not have a position '
'specified in the selected montage: ' +
str(not_found_names) + '. Their position has been '
'left untouched.')
elif isinstance(montage, DigMontage):
dig = _make_dig_points(nasion=montage.nasion, lpa=montage.lpa,
rpa=montage.rpa, hpi=montage.hpi,
dig_points=montage.hsp,
dig_ch_pos=montage.dig_ch_pos)
info['dig'] = dig
info['dev_head_t']['trans'] = montage.dev_head_t
if montage.dig_ch_pos is not None: # update channel positions, too
eeg_ref_pos = montage.dig_ch_pos.get('EEG000', np.zeros(3))
did_set = np.zeros(len(info['ch_names']), bool)
is_eeg = np.zeros(len(info['ch_names']), bool)
is_eeg[pick_types(info, meg=False, eeg=True, exclude=())] = True
for ch_name, ch_pos in montage.dig_ch_pos.items():
if ch_name == 'EEG000':
continue
if ch_name not in info['ch_names']:
raise RuntimeError('Montage channel %s not found in info'
% ch_name)
idx = info['ch_names'].index(ch_name)
did_set[idx] = True
this_loc = np.concatenate((ch_pos, eeg_ref_pos))
info['chs'][idx]['loc'][:6] = this_loc
did_not_set = [info['chs'][ii]['ch_name']
for ii in np.where(is_eeg & ~did_set)[0]]
if len(did_not_set) > 0:
warn('Did not set %s channel positions:\n%s'
% (len(did_not_set), ', '.join(did_not_set)))
else:
raise TypeError("Montage must be a 'Montage' or 'DigMontage' "
"instead of '%s'." % type(montage))
|