1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
# Author: Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import warnings
from nose.tools import assert_equal, assert_true, assert_raises
import numpy as np
from numpy.testing import (assert_array_equal, assert_almost_equal,
assert_allclose, assert_array_almost_equal,
assert_array_less)
from mne.tests.common import assert_dig_allclose
from mne.channels.montage import read_montage, _set_montage, read_dig_montage
from mne.utils import _TempDir, run_tests_if_main
from mne import create_info, EvokedArray, read_evokeds
from mne.coreg import fit_matched_points
from mne.transforms import apply_trans, get_ras_to_neuromag_trans
from mne.io.constants import FIFF
from mne.io.meas_info import _read_dig_points
from mne.io.kit import read_mrk
from mne.io import read_raw_brainvision
from mne.datasets import testing
data_path = testing.data_path(download=False)
fif_dig_montage_fname = op.join(data_path, 'montage', 'eeganes07.fif')
evoked_fname = op.join(data_path, 'montage', 'level2_raw-ave.fif')
io_dir = op.join(op.dirname(__file__), '..', '..', 'io')
kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
elp = op.join(kit_dir, 'test_elp.txt')
hsp = op.join(kit_dir, 'test_hsp.txt')
hpi = op.join(kit_dir, 'test_mrk.sqd')
bv_fname = op.join(io_dir, 'brainvision', 'tests', 'data', 'test.vhdr')
def test_montage():
"""Test making montages"""
tempdir = _TempDir()
# no pep8
input_str = [
'FidNz 0.00000 10.56381 -2.05108\nFidT9 -7.82694 0.45386 -3.76056\n'
'very_very_very_long_name 7.82694 0.45386 -3.76056',
'// MatLab Sphere coordinates [degrees] Cartesian coordinates\n' # noqa
'// Label Theta Phi Radius X Y Z off sphere surface\n' # noqa
'E1 37.700 -14.000 1.000 0.7677 0.5934 -0.2419 -0.00000000000000011\n' # noqa
'E2 44.600 -0.880 1.000 0.7119 0.7021 -0.0154 0.00000000000000000\n' # noqa
'E3 51.700 11.000 1.000 0.6084 0.7704 0.1908 0.00000000000000000', # noqa
'# ASA electrode file\nReferenceLabel avg\nUnitPosition mm\n'
'NumberPositions= 68\nPositions\n-86.0761 -19.9897 -47.9860\n'
'85.7939 -20.0093 -48.0310\n0.0083 86.8110 -39.9830\n'
'Labels\nLPA\nRPA\nNz\n',
'# ASA electrode file\nReferenceLabel avg\nUnitPosition m\n'
'NumberPositions= 68\nPositions\n-.0860761 -.0199897 -.0479860\n'
'.0857939 -.0200093 -.0480310\n.0000083 .00868110 -.0399830\n'
'Labels\nLPA\nRPA\nNz\n',
'Site Theta Phi\nFp1 -92 -72\nFp2 92 72\n'
'very_very_very_long_name -60 -51\n',
'346\n'
'EEG\t F3\t -62.027\t -50.053\t 85\n'
'EEG\t Fz\t 45.608\t 90\t 85\n'
'EEG\t F4\t 62.01\t 50.103\t 85\n',
'eeg Fp1 -95.0 -31.0 -3.0\neeg AF7 -81 -59 -3\neeg AF3 -87 -41 28\n'
]
kinds = ['test.sfp', 'test.csd', 'test_mm.elc', 'test_m.elc', 'test.txt',
'test.elp', 'test.hpts']
for kind, text in zip(kinds, input_str):
fname = op.join(tempdir, kind)
with open(fname, 'w') as fid:
fid.write(text)
montage = read_montage(fname)
if ".sfp" in kind or ".txt" in kind:
assert_true('very_very_very_long_name' in montage.ch_names)
assert_equal(len(montage.ch_names), 3)
assert_equal(len(montage.ch_names), len(montage.pos))
assert_equal(montage.pos.shape, (3, 3))
assert_equal(montage.kind, op.splitext(kind)[0])
if kind.endswith('csd'):
dtype = [('label', 'S4'), ('theta', 'f8'), ('phi', 'f8'),
('radius', 'f8'), ('x', 'f8'), ('y', 'f8'), ('z', 'f8'),
('off_sph', 'f8')]
try:
table = np.loadtxt(fname, skip_header=2, dtype=dtype)
except TypeError:
table = np.loadtxt(fname, skiprows=2, dtype=dtype)
pos2 = np.c_[table['x'], table['y'], table['z']]
assert_array_almost_equal(pos2, montage.pos, 4)
if kind.endswith('elc'):
# Make sure points are reasonable distance from geometric centroid
centroid = np.sum(montage.pos, axis=0) / montage.pos.shape[0]
distance_from_centroid = np.apply_along_axis(
np.linalg.norm, 1,
montage.pos - centroid)
assert_array_less(distance_from_centroid, 0.2)
assert_array_less(0.01, distance_from_centroid)
# test transform
input_str = """
eeg Fp1 -95.0 -31.0 -3.0
eeg AF7 -81 -59 -3
eeg AF3 -87 -41 28
cardinal 2 -91 0 -42
cardinal 1 0 -91 -42
cardinal 3 0 91 -42
"""
kind = 'test_fid.hpts'
fname = op.join(tempdir, kind)
with open(fname, 'w') as fid:
fid.write(input_str)
montage = read_montage(op.join(tempdir, 'test_fid.hpts'), transform=True)
# check coordinate transformation
pos = np.array([-95.0, -31.0, -3.0])
nasion = np.array([-91, 0, -42])
lpa = np.array([0, -91, -42])
rpa = np.array([0, 91, -42])
fids = np.vstack((nasion, lpa, rpa))
trans = get_ras_to_neuromag_trans(fids[0], fids[1], fids[2])
pos = apply_trans(trans, pos)
assert_array_equal(montage.pos[0], pos)
idx = montage.ch_names.index('2')
assert_array_equal(montage.pos[idx, [0, 2]], [0, 0])
idx = montage.ch_names.index('1')
assert_array_equal(montage.pos[idx, [1, 2]], [0, 0])
idx = montage.ch_names.index('3')
assert_array_equal(montage.pos[idx, [1, 2]], [0, 0])
pos = np.array([-95.0, -31.0, -3.0])
montage_fname = op.join(tempdir, 'test_fid.hpts')
montage = read_montage(montage_fname, unit='mm')
assert_array_equal(montage.pos[0], pos * 1e-3)
# test with last
info = create_info(montage.ch_names, 1e3, ['eeg'] * len(montage.ch_names))
_set_montage(info, montage)
pos2 = np.array([c['loc'][:3] for c in info['chs']])
assert_array_equal(pos2, montage.pos)
assert_equal(montage.ch_names, info['ch_names'])
info = create_info(
montage.ch_names, 1e3, ['eeg'] * len(montage.ch_names))
evoked = EvokedArray(
data=np.zeros((len(montage.ch_names), 1)), info=info, tmin=0)
evoked.set_montage(montage)
pos3 = np.array([c['loc'][:3] for c in evoked.info['chs']])
assert_array_equal(pos3, montage.pos)
assert_equal(montage.ch_names, evoked.info['ch_names'])
# Warning should be raised when some EEG are not specified in the montage
with warnings.catch_warnings(record=True) as w:
info = create_info(montage.ch_names + ['foo', 'bar'], 1e3,
['eeg'] * (len(montage.ch_names) + 2))
_set_montage(info, montage)
assert_true(len(w) == 1)
def test_read_dig_montage():
"""Test read_dig_montage"""
names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5']
montage = read_dig_montage(hsp, hpi, elp, names, transform=False)
elp_points = _read_dig_points(elp)
hsp_points = _read_dig_points(hsp)
hpi_points = read_mrk(hpi)
assert_equal(montage.point_names, names)
assert_array_equal(montage.elp, elp_points)
assert_array_equal(montage.hsp, hsp_points)
assert_array_equal(montage.hpi, hpi_points)
assert_array_equal(montage.dev_head_t, np.identity(4))
montage = read_dig_montage(hsp, hpi, elp, names,
transform=True, dev_head_t=True)
# check coordinate transformation
# nasion
assert_almost_equal(montage.nasion[0], 0)
assert_almost_equal(montage.nasion[2], 0)
# lpa and rpa
assert_allclose(montage.lpa[1:], 0, atol=1e-16)
assert_allclose(montage.rpa[1:], 0, atol=1e-16)
# device head transform
dev_head_t = fit_matched_points(tgt_pts=montage.elp,
src_pts=montage.hpi, out='trans')
assert_array_equal(montage.dev_head_t, dev_head_t)
# Digitizer as array
m2 = read_dig_montage(hsp_points, hpi_points, elp_points, names, unit='m')
assert_array_equal(m2.hsp, montage.hsp)
m3 = read_dig_montage(hsp_points * 1000, hpi_points, elp_points * 1000,
names)
assert_allclose(m3.hsp, montage.hsp)
# test unit parameter
montage_cm = read_dig_montage(hsp, hpi, elp, names, unit='cm')
assert_allclose(montage_cm.hsp, montage.hsp * 10.)
assert_allclose(montage_cm.elp, montage.elp * 10.)
assert_array_equal(montage_cm.hpi, montage.hpi)
assert_raises(ValueError, read_dig_montage, hsp, hpi, elp, names,
unit='km')
def test_set_dig_montage():
"""Test applying DigMontage to inst
"""
# Extensive testing of applying `dig` to info is done in test_meas_info
# with `test_make_dig_points`.
names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5']
hsp_points = _read_dig_points(hsp)
elp_points = _read_dig_points(elp)
hpi_points = read_mrk(hpi)
p0, p1, p2 = elp_points[:3]
nm_trans = get_ras_to_neuromag_trans(p0, p1, p2)
elp_points = apply_trans(nm_trans, elp_points)
nasion_point, lpa_point, rpa_point = elp_points[:3]
hsp_points = apply_trans(nm_trans, hsp_points)
montage = read_dig_montage(hsp, hpi, elp, names, transform=True)
info = create_info(['Test Ch'], 1e3, ['eeg'])
_set_montage(info, montage)
hs = np.array([p['r'] for i, p in enumerate(info['dig'])
if p['kind'] == FIFF.FIFFV_POINT_EXTRA])
nasion_dig = np.array([p['r'] for p in info['dig']
if all([p['ident'] == FIFF.FIFFV_POINT_NASION,
p['kind'] == FIFF.FIFFV_POINT_CARDINAL])])
lpa_dig = np.array([p['r'] for p in info['dig']
if all([p['ident'] == FIFF.FIFFV_POINT_LPA,
p['kind'] == FIFF.FIFFV_POINT_CARDINAL])])
rpa_dig = np.array([p['r'] for p in info['dig']
if all([p['ident'] == FIFF.FIFFV_POINT_RPA,
p['kind'] == FIFF.FIFFV_POINT_CARDINAL])])
hpi_dig = np.array([p['r'] for p in info['dig']
if p['kind'] == FIFF.FIFFV_POINT_HPI])
assert_array_equal(hs, hsp_points)
assert_array_equal(nasion_dig.ravel(), nasion_point)
assert_array_equal(lpa_dig.ravel(), lpa_point)
assert_array_equal(rpa_dig.ravel(), rpa_point)
assert_array_equal(hpi_dig, hpi_points)
assert_array_equal(montage.dev_head_t, info['dev_head_t']['trans'])
@testing.requires_testing_data
def test_fif_dig_montage():
"""Test FIF dig montage support"""
dig_montage = read_dig_montage(fif=fif_dig_montage_fname)
# Make a BrainVision file like the one the user would have had
with warnings.catch_warnings(record=True) as w:
raw_bv = read_raw_brainvision(bv_fname, preload=True)
assert_true(any('will be dropped' in str(ww.message) for ww in w))
raw_bv_2 = raw_bv.copy()
mapping = dict()
for ii, ch_name in enumerate(raw_bv.ch_names[:-1]):
mapping[ch_name] = 'EEG%03d' % (ii + 1,)
raw_bv.rename_channels(mapping)
for ii, ch_name in enumerate(raw_bv_2.ch_names[:-1]):
mapping[ch_name] = 'EEG%03d' % (ii + 33,)
raw_bv_2.rename_channels(mapping)
raw_bv.drop_channels(['STI 014'])
raw_bv.add_channels([raw_bv_2])
# Set the montage
raw_bv.set_montage(dig_montage)
# Check the result
evoked = read_evokeds(evoked_fname)[0]
assert_equal(len(raw_bv.ch_names), len(evoked.ch_names))
for ch_py, ch_c in zip(raw_bv.info['chs'], evoked.info['chs']):
assert_equal(ch_py['ch_name'], ch_c['ch_name'].replace('EEG ', 'EEG'))
# C actually says it's unknown, but it's not (?):
# assert_equal(ch_py['coord_frame'], ch_c['coord_frame'])
assert_equal(ch_py['coord_frame'], FIFF.FIFFV_COORD_HEAD)
assert_allclose(ch_py['loc'], ch_c['loc'])
assert_dig_allclose(raw_bv.info, evoked.info)
run_tests_if_main()
|