File: test_montage.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (274 lines) | stat: -rw-r--r-- 12,085 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Author: Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
import warnings

from nose.tools import assert_equal, assert_true, assert_raises

import numpy as np
from numpy.testing import (assert_array_equal, assert_almost_equal,
                           assert_allclose, assert_array_almost_equal,
                           assert_array_less)
from mne.tests.common import assert_dig_allclose
from mne.channels.montage import read_montage, _set_montage, read_dig_montage
from mne.utils import _TempDir, run_tests_if_main
from mne import create_info, EvokedArray, read_evokeds
from mne.coreg import fit_matched_points
from mne.transforms import apply_trans, get_ras_to_neuromag_trans
from mne.io.constants import FIFF
from mne.io.meas_info import _read_dig_points
from mne.io.kit import read_mrk
from mne.io import read_raw_brainvision

from mne.datasets import testing

data_path = testing.data_path(download=False)
fif_dig_montage_fname = op.join(data_path, 'montage', 'eeganes07.fif')
evoked_fname = op.join(data_path, 'montage', 'level2_raw-ave.fif')

io_dir = op.join(op.dirname(__file__), '..', '..', 'io')
kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
elp = op.join(kit_dir, 'test_elp.txt')
hsp = op.join(kit_dir, 'test_hsp.txt')
hpi = op.join(kit_dir, 'test_mrk.sqd')
bv_fname = op.join(io_dir, 'brainvision', 'tests', 'data', 'test.vhdr')


def test_montage():
    """Test making montages"""
    tempdir = _TempDir()
    # no pep8
    input_str = [
        'FidNz 0.00000 10.56381 -2.05108\nFidT9 -7.82694 0.45386 -3.76056\n'
        'very_very_very_long_name 7.82694 0.45386 -3.76056',
        '// MatLab   Sphere coordinates [degrees]         Cartesian coordinates\n'  # noqa
        '// Label       Theta       Phi    Radius         X         Y         Z       off sphere surface\n'  # noqa
        'E1      37.700     -14.000       1.000    0.7677    0.5934   -0.2419  -0.00000000000000011\n'  # noqa
        'E2      44.600      -0.880       1.000    0.7119    0.7021   -0.0154   0.00000000000000000\n'  # noqa
        'E3      51.700      11.000       1.000    0.6084    0.7704    0.1908   0.00000000000000000',  # noqa
        '# ASA electrode file\nReferenceLabel  avg\nUnitPosition    mm\n'
        'NumberPositions=    68\nPositions\n-86.0761 -19.9897 -47.9860\n'
        '85.7939 -20.0093 -48.0310\n0.0083 86.8110 -39.9830\n'
        'Labels\nLPA\nRPA\nNz\n',
        '# ASA electrode file\nReferenceLabel  avg\nUnitPosition    m\n'
        'NumberPositions=    68\nPositions\n-.0860761 -.0199897 -.0479860\n'
        '.0857939 -.0200093 -.0480310\n.0000083 .00868110 -.0399830\n'
        'Labels\nLPA\nRPA\nNz\n',
        'Site  Theta  Phi\nFp1  -92    -72\nFp2   92     72\n'
        'very_very_very_long_name   -60    -51\n',
        '346\n'
        'EEG\t      F3\t -62.027\t -50.053\t      85\n'
        'EEG\t      Fz\t  45.608\t      90\t      85\n'
        'EEG\t      F4\t   62.01\t  50.103\t      85\n',
        'eeg Fp1 -95.0 -31.0 -3.0\neeg AF7 -81 -59 -3\neeg AF3 -87 -41 28\n'
    ]
    kinds = ['test.sfp', 'test.csd', 'test_mm.elc', 'test_m.elc', 'test.txt',
             'test.elp', 'test.hpts']
    for kind, text in zip(kinds, input_str):
        fname = op.join(tempdir, kind)
        with open(fname, 'w') as fid:
            fid.write(text)
        montage = read_montage(fname)
        if ".sfp" in kind or ".txt" in kind:
            assert_true('very_very_very_long_name' in montage.ch_names)
        assert_equal(len(montage.ch_names), 3)
        assert_equal(len(montage.ch_names), len(montage.pos))
        assert_equal(montage.pos.shape, (3, 3))
        assert_equal(montage.kind, op.splitext(kind)[0])
        if kind.endswith('csd'):
            dtype = [('label', 'S4'), ('theta', 'f8'), ('phi', 'f8'),
                     ('radius', 'f8'), ('x', 'f8'), ('y', 'f8'), ('z', 'f8'),
                     ('off_sph', 'f8')]
            try:
                table = np.loadtxt(fname, skip_header=2, dtype=dtype)
            except TypeError:
                table = np.loadtxt(fname, skiprows=2, dtype=dtype)
            pos2 = np.c_[table['x'], table['y'], table['z']]
            assert_array_almost_equal(pos2, montage.pos, 4)
        if kind.endswith('elc'):
            # Make sure points are reasonable distance from geometric centroid
            centroid = np.sum(montage.pos, axis=0) / montage.pos.shape[0]
            distance_from_centroid = np.apply_along_axis(
                np.linalg.norm, 1,
                montage.pos - centroid)
            assert_array_less(distance_from_centroid, 0.2)
            assert_array_less(0.01, distance_from_centroid)

    # test transform
    input_str = """
    eeg Fp1 -95.0 -31.0 -3.0
    eeg AF7 -81 -59 -3
    eeg AF3 -87 -41 28
    cardinal 2 -91 0 -42
    cardinal 1 0 -91 -42
    cardinal 3 0 91 -42
    """
    kind = 'test_fid.hpts'
    fname = op.join(tempdir, kind)
    with open(fname, 'w') as fid:
        fid.write(input_str)
    montage = read_montage(op.join(tempdir, 'test_fid.hpts'), transform=True)
    # check coordinate transformation
    pos = np.array([-95.0, -31.0, -3.0])
    nasion = np.array([-91, 0, -42])
    lpa = np.array([0, -91, -42])
    rpa = np.array([0, 91, -42])
    fids = np.vstack((nasion, lpa, rpa))
    trans = get_ras_to_neuromag_trans(fids[0], fids[1], fids[2])
    pos = apply_trans(trans, pos)
    assert_array_equal(montage.pos[0], pos)
    idx = montage.ch_names.index('2')
    assert_array_equal(montage.pos[idx, [0, 2]], [0, 0])
    idx = montage.ch_names.index('1')
    assert_array_equal(montage.pos[idx, [1, 2]], [0, 0])
    idx = montage.ch_names.index('3')
    assert_array_equal(montage.pos[idx, [1, 2]], [0, 0])
    pos = np.array([-95.0, -31.0, -3.0])
    montage_fname = op.join(tempdir, 'test_fid.hpts')
    montage = read_montage(montage_fname, unit='mm')
    assert_array_equal(montage.pos[0], pos * 1e-3)

    # test with last
    info = create_info(montage.ch_names, 1e3, ['eeg'] * len(montage.ch_names))
    _set_montage(info, montage)
    pos2 = np.array([c['loc'][:3] for c in info['chs']])
    assert_array_equal(pos2, montage.pos)
    assert_equal(montage.ch_names, info['ch_names'])

    info = create_info(
        montage.ch_names, 1e3, ['eeg'] * len(montage.ch_names))

    evoked = EvokedArray(
        data=np.zeros((len(montage.ch_names), 1)), info=info, tmin=0)
    evoked.set_montage(montage)
    pos3 = np.array([c['loc'][:3] for c in evoked.info['chs']])
    assert_array_equal(pos3, montage.pos)
    assert_equal(montage.ch_names, evoked.info['ch_names'])

    # Warning should be raised when some EEG are not specified in the montage
    with warnings.catch_warnings(record=True) as w:
        info = create_info(montage.ch_names + ['foo', 'bar'], 1e3,
                           ['eeg'] * (len(montage.ch_names) + 2))
        _set_montage(info, montage)
        assert_true(len(w) == 1)


def test_read_dig_montage():
    """Test read_dig_montage"""
    names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5']
    montage = read_dig_montage(hsp, hpi, elp, names, transform=False)
    elp_points = _read_dig_points(elp)
    hsp_points = _read_dig_points(hsp)
    hpi_points = read_mrk(hpi)
    assert_equal(montage.point_names, names)
    assert_array_equal(montage.elp, elp_points)
    assert_array_equal(montage.hsp, hsp_points)
    assert_array_equal(montage.hpi, hpi_points)
    assert_array_equal(montage.dev_head_t, np.identity(4))
    montage = read_dig_montage(hsp, hpi, elp, names,
                               transform=True, dev_head_t=True)
    # check coordinate transformation
    # nasion
    assert_almost_equal(montage.nasion[0], 0)
    assert_almost_equal(montage.nasion[2], 0)
    # lpa and rpa
    assert_allclose(montage.lpa[1:], 0, atol=1e-16)
    assert_allclose(montage.rpa[1:], 0, atol=1e-16)
    # device head transform
    dev_head_t = fit_matched_points(tgt_pts=montage.elp,
                                    src_pts=montage.hpi, out='trans')
    assert_array_equal(montage.dev_head_t, dev_head_t)

    # Digitizer as array
    m2 = read_dig_montage(hsp_points, hpi_points, elp_points, names, unit='m')
    assert_array_equal(m2.hsp, montage.hsp)
    m3 = read_dig_montage(hsp_points * 1000, hpi_points, elp_points * 1000,
                          names)
    assert_allclose(m3.hsp, montage.hsp)

    # test unit parameter
    montage_cm = read_dig_montage(hsp, hpi, elp, names, unit='cm')
    assert_allclose(montage_cm.hsp, montage.hsp * 10.)
    assert_allclose(montage_cm.elp, montage.elp * 10.)
    assert_array_equal(montage_cm.hpi, montage.hpi)
    assert_raises(ValueError, read_dig_montage, hsp, hpi, elp, names,
                  unit='km')


def test_set_dig_montage():
    """Test applying DigMontage to inst
    """
    # Extensive testing of applying `dig` to info is done in test_meas_info
    # with `test_make_dig_points`.
    names = ['nasion', 'lpa', 'rpa', '1', '2', '3', '4', '5']
    hsp_points = _read_dig_points(hsp)
    elp_points = _read_dig_points(elp)
    hpi_points = read_mrk(hpi)
    p0, p1, p2 = elp_points[:3]
    nm_trans = get_ras_to_neuromag_trans(p0, p1, p2)
    elp_points = apply_trans(nm_trans, elp_points)
    nasion_point, lpa_point, rpa_point = elp_points[:3]
    hsp_points = apply_trans(nm_trans, hsp_points)

    montage = read_dig_montage(hsp, hpi, elp, names, transform=True)
    info = create_info(['Test Ch'], 1e3, ['eeg'])
    _set_montage(info, montage)
    hs = np.array([p['r'] for i, p in enumerate(info['dig'])
                   if p['kind'] == FIFF.FIFFV_POINT_EXTRA])
    nasion_dig = np.array([p['r'] for p in info['dig']
                           if all([p['ident'] == FIFF.FIFFV_POINT_NASION,
                                   p['kind'] == FIFF.FIFFV_POINT_CARDINAL])])
    lpa_dig = np.array([p['r'] for p in info['dig']
                        if all([p['ident'] == FIFF.FIFFV_POINT_LPA,
                                p['kind'] == FIFF.FIFFV_POINT_CARDINAL])])
    rpa_dig = np.array([p['r'] for p in info['dig']
                        if all([p['ident'] == FIFF.FIFFV_POINT_RPA,
                                p['kind'] == FIFF.FIFFV_POINT_CARDINAL])])
    hpi_dig = np.array([p['r'] for p in info['dig']
                        if p['kind'] == FIFF.FIFFV_POINT_HPI])
    assert_array_equal(hs, hsp_points)
    assert_array_equal(nasion_dig.ravel(), nasion_point)
    assert_array_equal(lpa_dig.ravel(), lpa_point)
    assert_array_equal(rpa_dig.ravel(), rpa_point)
    assert_array_equal(hpi_dig, hpi_points)
    assert_array_equal(montage.dev_head_t, info['dev_head_t']['trans'])


@testing.requires_testing_data
def test_fif_dig_montage():
    """Test FIF dig montage support"""
    dig_montage = read_dig_montage(fif=fif_dig_montage_fname)

    # Make a BrainVision file like the one the user would have had
    with warnings.catch_warnings(record=True) as w:
        raw_bv = read_raw_brainvision(bv_fname, preload=True)
    assert_true(any('will be dropped' in str(ww.message) for ww in w))
    raw_bv_2 = raw_bv.copy()
    mapping = dict()
    for ii, ch_name in enumerate(raw_bv.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 1,)
    raw_bv.rename_channels(mapping)
    for ii, ch_name in enumerate(raw_bv_2.ch_names[:-1]):
        mapping[ch_name] = 'EEG%03d' % (ii + 33,)
    raw_bv_2.rename_channels(mapping)
    raw_bv.drop_channels(['STI 014'])
    raw_bv.add_channels([raw_bv_2])

    # Set the montage
    raw_bv.set_montage(dig_montage)

    # Check the result
    evoked = read_evokeds(evoked_fname)[0]

    assert_equal(len(raw_bv.ch_names), len(evoked.ch_names))
    for ch_py, ch_c in zip(raw_bv.info['chs'], evoked.info['chs']):
        assert_equal(ch_py['ch_name'], ch_c['ch_name'].replace('EEG ', 'EEG'))
        # C actually says it's unknown, but it's not (?):
        # assert_equal(ch_py['coord_frame'], ch_c['coord_frame'])
        assert_equal(ch_py['coord_frame'], FIFF.FIFFV_COORD_HEAD)
        assert_allclose(ch_py['loc'], ch_c['loc'])
    assert_dig_allclose(raw_bv.info, evoked.info)

run_tests_if_main()