1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
|
# Authors: Jean-Remi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Clement Moutard <clement.moutard@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
import copy
from .base import _set_cv
from ..io.pick import _pick_data_channels
from ..viz.decoding import plot_gat_matrix, plot_gat_times
from ..parallel import parallel_func, check_n_jobs
from ..utils import warn, check_version
class _DecodingTime(dict):
"""A dictionary to configure the training times that has the following keys:
'slices' : ndarray, shape (n_clfs,)
Array of time slices (in indices) used for each classifier.
If not given, computed from 'start', 'stop', 'length', 'step'.
'start' : float
Time at which to start decoding (in seconds).
Defaults to min(epochs.times).
'stop' : float
Maximal time at which to stop decoding (in seconds).
Defaults to max(times).
'step' : float
Duration separating the start of subsequent classifiers (in
seconds). Defaults to one time sample.
'length' : float
Duration of each classifier (in seconds). Defaults to one time sample.
If None, empty dict. """
def __repr__(self):
s = ""
if "start" in self:
s += "start: %0.3f (s)" % (self["start"])
if "stop" in self:
s += ", stop: %0.3f (s)" % (self["stop"])
if "step" in self:
s += ", step: %0.3f (s)" % (self["step"])
if "length" in self:
s += ", length: %0.3f (s)" % (self["length"])
if "slices" in self:
# identify depth: training times only contains n_time but
# testing_times can contain n_times or n_times * m_times
depth = [len(ii) for ii in self["slices"]]
if len(np.unique(depth)) == 1: # if all slices have same depth
if depth[0] == 1: # if depth is one
s += ", n_time_windows: %s" % (len(depth))
else:
s += ", n_time_windows: %s x %s" % (len(depth), depth[0])
else:
s += (", n_time_windows: %s x [%s, %s]" %
(len(depth),
min([len(ii) for ii in depth]),
max(([len(ii) for ii in depth]))))
return "<DecodingTime | %s>" % s
class _GeneralizationAcrossTime(object):
"""Generic object to train and test a series of classifiers at and across
different time samples.
""" # noqa
def __init__(self, picks=None, cv=5, clf=None, train_times=None,
test_times=None, predict_method='predict',
predict_mode='cross-validation', scorer=None,
score_mode='mean-fold-wise', n_jobs=1):
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
# Store parameters in object
self.cv = cv
# Define training sliding window
self.train_times = (_DecodingTime() if train_times is None
else _DecodingTime(train_times))
# Define testing sliding window. If None, will be set in predict()
if test_times is None:
self.test_times = _DecodingTime()
elif test_times == 'diagonal':
self.test_times = 'diagonal'
else:
self.test_times = _DecodingTime(test_times)
# Default classification pipeline
if clf is None:
scaler = StandardScaler()
estimator = LogisticRegression()
clf = Pipeline([('scaler', scaler), ('estimator', estimator)])
self.clf = clf
self.predict_mode = predict_mode
self.scorer = scorer
self.score_mode = score_mode
self.picks = picks
self.predict_method = predict_method
self.n_jobs = n_jobs
def fit(self, epochs, y=None):
"""Train a classifier on each specified time slice.
.. note::
This function sets the ``picks_``, ``ch_names``, ``cv_``,
``y_train``, ``train_times_`` and ``estimators_`` attributes.
Parameters
----------
epochs : instance of Epochs
The epochs.
y : list or ndarray of int, shape (n_samples,) or None, optional
To-be-fitted model values. If None, y = epochs.events[:, 2].
Returns
-------
self : GeneralizationAcrossTime
Returns fitted GeneralizationAcrossTime object.
Notes
-----
If X and y are not C-ordered and contiguous arrays of np.float64 and
X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse
matrices as input.
"""
from sklearn.base import clone
# Clean attributes
for att in ['picks_', 'ch_names', 'y_train_', 'cv_', 'train_times_',
'estimators_', 'test_times_', 'y_pred_', 'y_true_',
'scores_', 'scorer_']:
if hasattr(self, att):
delattr(self, att)
n_jobs = self.n_jobs
# Extract data from MNE structure
X, y, self.picks_ = _check_epochs_input(epochs, y, self.picks)
self.ch_names = [epochs.ch_names[p] for p in self.picks_]
# Prepare cross-validation
self.cv_, self._cv_splits = _set_cv(self.cv, self.clf, X=X, y=y)
self.y_train_ = y
# Get train slices of times
self.train_times_ = _sliding_window(epochs.times, self.train_times,
epochs.info['sfreq'])
# Parallel across training time
# TODO: JRK: Chunking times points needs to be simplified
parallel, p_func, n_jobs = parallel_func(_fit_slices, n_jobs)
n_chunks = min(len(self.train_times_['slices']), n_jobs)
time_chunks = np.array_split(self.train_times_['slices'], n_chunks)
out = parallel(p_func(clone(self.clf),
X[..., np.unique(np.concatenate(time_chunk))],
y, time_chunk, self._cv_splits)
for time_chunk in time_chunks)
# Unpack estimators into time slices X folds list of lists.
self.estimators_ = sum(out, list())
return self
def predict(self, epochs):
"""Classifiers' predictions on each specified testing time slice.
.. note::
This function sets the ``y_pred_`` and ``test_times_`` attributes.
Parameters
----------
epochs : instance of Epochs
The epochs. Can be similar to fitted epochs or not. See
predict_mode parameter.
Returns
-------
y_pred : list of lists of arrays of floats, shape (n_train_t, n_test_t, n_epochs, n_prediction_dims)
The single-trial predictions at each training time and each testing
time. Note that the number of testing times per training time need
not be regular; else
``np.shape(y_pred_) = (n_train_time, n_test_time, n_epochs)``.
""" # noqa
# Check that classifier has predict_method (e.g. predict_proba is not
# always available):
if not hasattr(self.clf, self.predict_method):
raise NotImplementedError('%s does not have "%s"' % (
self.clf, self.predict_method))
# Check that at least one classifier has been trained
if not hasattr(self, 'estimators_'):
raise RuntimeError('Please fit models before trying to predict')
# Check predict mode
if self.predict_mode not in ['cross-validation', 'mean-prediction']:
raise ValueError('predict_mode must be a str, "mean-prediction" '
'or "cross-validation"')
# Check that training cv and predicting cv match
if self.predict_mode == 'cross-validation':
n_est_cv = [len(estimator) for estimator in self.estimators_]
heterogeneous_cv = len(set(n_est_cv)) != 1
mismatch_cv = n_est_cv[0] != len(self._cv_splits)
mismatch_y = len(self.y_train_) != len(epochs)
if heterogeneous_cv or mismatch_cv or mismatch_y:
raise ValueError(
'When predict_mode = "cross-validation", the training '
'and predicting cv schemes must be identical.')
# Clean attributes
for att in ['y_pred_', 'test_times_', 'scores_', 'scorer_', 'y_true_']:
if hasattr(self, att):
delattr(self, att)
_warn_once.clear() # reset self-baked warning tracker
X, y, _ = _check_epochs_input(epochs, None, self.picks_)
if not np.all([len(test) for train, test in self._cv_splits]):
warn('Some folds do not have any test epochs.')
# Define testing sliding window
if self.test_times == 'diagonal':
test_times = _DecodingTime()
test_times['slices'] = [[s] for s in self.train_times_['slices']]
test_times['times'] = [[s] for s in self.train_times_['times']]
elif isinstance(self.test_times, dict):
test_times = copy.deepcopy(self.test_times)
else:
raise ValueError('test_times must be a dict or "diagonal"')
if 'slices' not in test_times:
if 'length' not in self.train_times_.keys():
ValueError('Need test_times["slices"] with adhoc train_times.')
# Check that same number of time sample in testing than in training
# (otherwise it won 't be the same number of features')
test_times['length'] = test_times.get('length',
self.train_times_['length'])
# Make a sliding window for each training time.
slices_list = list()
for _ in range(len(self.train_times_['slices'])):
test_times_ = _sliding_window(epochs.times, test_times,
epochs.info['sfreq'])
slices_list += [test_times_['slices']]
test_times = test_times_
test_times['slices'] = slices_list
test_times['times'] = [_set_window_time(test, epochs.times)
for test in test_times['slices']]
for train, tests in zip(self.train_times_['slices'],
test_times['slices']):
# The user may define irregular timing. We thus need to ensure
# that the dimensionality of each estimator (i.e. training
# time) corresponds to the dimensionality of each testing time)
if not np.all([len(test) == len(train) for test in tests]):
raise ValueError('train_times and test_times must '
'have identical lengths')
# Store all testing times parameters
self.test_times_ = test_times
n_orig_epochs, _, n_times = X.shape
# Subselects the to-be-predicted epochs so as to manipulate a
# contiguous array X by using slices rather than indices.
test_epochs = []
if self.predict_mode == 'cross-validation':
test_idxs = [ii for train, test in self._cv_splits for ii in test]
start = 0
for _, test in self._cv_splits:
n_test_epochs = len(test)
stop = start + n_test_epochs
test_epochs.append(slice(start, stop, 1))
start += n_test_epochs
X = X[test_idxs]
# Prepare parallel predictions across testing time points
# FIXME Note that this means that TimeDecoding.predict isn't parallel
parallel, p_func, n_jobs = parallel_func(_predict_slices, self.n_jobs)
n_test_slice = max(len(sl) for sl in self.test_times_['slices'])
# Loop across estimators (i.e. training times)
n_chunks = min(n_test_slice, n_jobs)
chunks = [np.array_split(slices, n_chunks)
for slices in self.test_times_['slices']]
chunks = map(list, zip(*chunks))
# To minimize memory during parallelization, we apply some chunking
y_pred = parallel(p_func(
estimators=self.estimators_, cv_splits=self._cv_splits,
predict_mode=self.predict_mode, predict_method=self.predict_method,
n_orig_epochs=n_orig_epochs, test_epochs=test_epochs,
**dict(zip(['X', 'train_times'], _chunk_data(X, chunk))))
for chunk in chunks)
# Concatenate chunks across test time dimension.
n_tests = [len(sl) for sl in self.test_times_['slices']]
if len(set(n_tests)) == 1: # does GAT deal with a regular array/matrix
self.y_pred_ = np.concatenate(y_pred, axis=1)
else:
# Non regular testing times, y_pred is an array of arrays with
# different lengths.
# FIXME: should do this with numpy operators only
self.y_pred_ = [[test for chunk in train for test in chunk]
for train in map(list, zip(*y_pred))]
return self.y_pred_
def score(self, epochs=None, y=None):
"""Score Epochs
Estimate scores across trials by comparing the prediction estimated for
each trial to its true value.
Calls ``predict()`` if it has not been already.
.. note::
The function updates the ``scorer_``, ``scores_``, and
``y_true_`` attributes.
.. note::
If ``predict_mode`` is 'mean-prediction', ``score_mode`` is
automatically set to 'mean-sample-wise'.
Parameters
----------
epochs : instance of Epochs | None, optional
The epochs. Can be similar to fitted epochs or not.
If None, it needs to rely on the predictions ``y_pred_``
generated with ``predict()``.
y : list | ndarray, shape (n_epochs,) | None, optional
True values to be compared with the predictions ``y_pred_``
generated with ``predict()`` via ``scorer_``.
If None and ``predict_mode``=='cross-validation' y = ``y_train_``.
Returns
-------
scores : list of lists of float
The scores estimated by ``scorer_`` at each training time and each
testing time (e.g. mean accuracy of ``predict(X)``). Note that the
number of testing times per training time need not be regular;
else, np.shape(scores) = (n_train_time, n_test_time). If
``score_mode`` is 'fold-wise', np.shape(scores) = (n_train_time,
n_test_time, n_folds).
"""
import sklearn.metrics
from sklearn.base import is_classifier
from sklearn.metrics import accuracy_score, mean_squared_error
if check_version('sklearn', '0.17'):
from sklearn.base import is_regressor
else:
def is_regressor(clf):
return False
# Run predictions if not already done
if epochs is not None:
self.predict(epochs)
else:
if not hasattr(self, 'y_pred_'):
raise RuntimeError('Please predict() epochs first or pass '
'epochs to score()')
# Check scorer
if self.score_mode not in ('fold-wise', 'mean-fold-wise',
'mean-sample-wise'):
raise ValueError("score_mode must be 'fold-wise', "
"'mean-fold-wise' or 'mean-sample-wise'. "
"Got %s instead'" % self.score_mode)
score_mode = self.score_mode
if (self.predict_mode == 'mean-prediction' and
self.score_mode != 'mean-sample-wise'):
warn("score_mode changed from %s set to 'mean-sample-wise' because"
" predict_mode is 'mean-prediction'." % self.score_mode)
score_mode = 'mean-sample-wise'
self.scorer_ = self.scorer
if self.scorer_ is None:
# Try to guess which scoring metrics should be used
if self.predict_method == "predict":
if is_classifier(self.clf):
self.scorer_ = accuracy_score
elif is_regressor(self.clf):
self.scorer_ = mean_squared_error
elif isinstance(self.scorer_, str):
if hasattr(sklearn.metrics, '%s_score' % self.scorer_):
self.scorer_ = getattr(sklearn.metrics, '%s_score' %
self.scorer_)
else:
raise KeyError("{0} scorer Doesn't appear to be valid a "
"scikit-learn scorer.".format(self.scorer_))
if not self.scorer_:
raise ValueError('Could not find a scoring metric for clf=%s '
' and predict_method=%s. Manually define scorer'
'.' % (self.clf, self.predict_method))
# If no regressor is passed, use default epochs events
if y is None:
if self.predict_mode == 'cross-validation':
y = self.y_train_
else:
if epochs is not None:
y = epochs.events[:, 2]
else:
raise RuntimeError('y is undefined because '
'predict_mode="mean-prediction" and '
'epochs are missing. You need to '
'explicitly specify y.')
if not np.all(np.unique(y) == np.unique(self.y_train_)):
raise ValueError('Classes (y) passed differ from classes used '
'for training. Please explicitly pass your y '
'for scoring.')
elif isinstance(y, list):
y = np.array(y)
# Clean attributes
for att in ['scores_', 'y_true_']:
if hasattr(self, att):
delattr(self, att)
self.y_true_ = y # to be compared with y_pred for scoring
# Preprocessing for parallelization across training times; to avoid
# overheads, we divide them in large chunks.
n_jobs = min(len(self.y_pred_[0][0]), check_n_jobs(self.n_jobs))
parallel, p_func, n_jobs = parallel_func(_score_slices, n_jobs)
n_estimators = len(self.train_times_['slices'])
n_chunks = min(n_estimators, n_jobs)
chunks = np.array_split(range(len(self.train_times_['slices'])),
n_chunks)
scores = parallel(p_func(
self.y_true_, [self.y_pred_[train] for train in chunk],
self.scorer_, score_mode, self._cv_splits)
for chunk in chunks)
# TODO: np.array scores from initialization JRK
self.scores_ = np.array([score for chunk in scores for score in chunk])
return self.scores_
_warn_once = dict()
def _predict_slices(X, train_times, estimators, cv_splits, predict_mode,
predict_method, n_orig_epochs, test_epochs):
"""Aux function of GeneralizationAcrossTime
Run classifiers predictions loop across time samples.
Parameters
----------
X : ndarray, shape (n_epochs, n_features, n_times)
To-be-fitted data.
estimators : list of array-like, shape (n_times, n_folds)
List of array of scikit-learn classifiers fitted in cross-validation.
cv_splits : list of tuples
List of tuples of train and test array generated from cv.
train_times : list
List of list of slices selecting data from X from which is prediction
is generated.
predict_method : str
Specifies prediction method for the estimator.
predict_mode : {'cross-validation', 'mean-prediction'}
Indicates how predictions are achieved with regards to the cross-
validation procedure:
'cross-validation' : estimates a single prediction per sample based
on the unique independent classifier fitted in the cross-
validation.
'mean-prediction' : estimates k predictions per sample, based on
each of the k-fold cross-validation classifiers, and average
these predictions into a single estimate per sample.
Default: 'cross-validation'
n_orig_epochs : int
Original number of predicted epochs before slice definition. Note
that the number of epochs may have been cropped if the cross validation
is not deterministic (e.g. with ShuffleSplit, we may only predict a
subset of epochs).
test_epochs : list of slices
List of slices to select the tested epoched in the cv.
"""
# Check inputs
n_epochs, _, n_times = X.shape
n_train = len(estimators)
n_test = [len(test_t_idxs) for test_t_idxs in train_times]
# Loop across training times (i.e. estimators)
y_pred = None
for train_t_idx, (estimator_cv, test_t_idxs) in enumerate(
zip(estimators, train_times)):
# Checks whether predict is based on contiguous windows of lengths = 1
# time-sample, ranging across the entire times. In this case, we will
# be able to vectorize the testing times samples.
# Set expected start time if window length == 1
start = np.arange(n_times)
contiguous_start = np.array_equal([sl[0] for sl in test_t_idxs], start)
window_lengths = np.unique([len(sl) for sl in test_t_idxs])
vectorize_times = (window_lengths == 1) and contiguous_start
if vectorize_times:
# In vectorize mode, we avoid iterating over time test time indices
test_t_idxs = [slice(start[0], start[-1] + 1, 1)]
elif _warn_once.get('vectorization', True):
# Only warn if multiple testing time
if len(test_t_idxs) > 1:
warn('Due to a time window with length > 1, unable to '
' vectorize across testing times. This leads to slower '
'predictions compared to the length == 1 case.')
_warn_once['vectorization'] = False
# Iterate over testing times. If vectorize_times: 1 iteration.
for ii, test_t_idx in enumerate(test_t_idxs):
# Vectoring chan_times features in case of multiple time samples
# given to the estimators.
X_pred = X
if not vectorize_times:
X_pred = X[:, :, test_t_idx].reshape(n_epochs, -1)
if predict_mode == 'mean-prediction':
# Bagging: predict with each fold's estimator and combine
# predictions.
y_pred_ = _predict(X_pred, estimator_cv,
vectorize_times=vectorize_times,
predict_method=predict_method)
# Initialize y_pred now we know its dimensionality
if y_pred is None:
n_dim = y_pred_.shape[-1]
y_pred = _init_ypred(n_train, n_test, n_orig_epochs, n_dim)
if vectorize_times:
# When vectorizing, we predict multiple time points at once
# to gain speed. The utput predictions thus correspond to
# different test time indices.
y_pred[train_t_idx][test_t_idx] = y_pred_
else:
# Output predictions in a single test time column
y_pred[train_t_idx][ii] = y_pred_
elif predict_mode == 'cross-validation':
# Predict using the estimator corresponding to each fold
for (_, test), test_epoch, estimator in zip(
cv_splits, test_epochs, estimator_cv):
if test.size == 0: # see issue #2788
continue
y_pred_ = _predict(X_pred[test_epoch], [estimator],
vectorize_times=vectorize_times,
predict_method=predict_method)
# Initialize y_pred now we know its dimensionality
if y_pred is None:
n_dim = y_pred_.shape[-1]
y_pred = _init_ypred(n_train, n_test, n_orig_epochs,
n_dim)
if vectorize_times:
# When vectorizing, we predict multiple time points at
# once to gain speed. The output predictions thus
# correspond to different test_t_idx columns.
y_pred[train_t_idx][test_t_idx, test, ...] = y_pred_
else:
# Output predictions in a single test_t_idx column
y_pred[train_t_idx][ii, test, ...] = y_pred_
return y_pred
def _init_ypred(n_train, n_test, n_orig_epochs, n_dim):
"""Initialize the predictions for each train/test time points.
Parameters
----------
n_train : int
Number of training time point (i.e. estimators)
n_test : list of int
List of number of testing time points for each estimator.
n_orig_epochs : int
Number of epochs passed to gat.predict()
n_dim : int
Number of dimensionality of y_pred. See np.shape(clf.predict(X))
Returns
-------
y_pred : np.array, shape(n_train, n_test, n_orig_epochs, n_dim)
Empty array.
Notes
-----
The ``y_pred`` variable can only be initialized after the first
prediction, because we can't know whether it is a a categorical output or a
set of probabilistic estimates. If all train time points have the same
number of testing time points, then y_pred is a matrix. Else it is an array
of arrays.
"""
if len(set(n_test)) == 1:
y_pred = np.empty((n_train, n_test[0], n_orig_epochs, n_dim))
else:
y_pred = np.array([np.empty((this_n, n_orig_epochs, n_dim))
for this_n in n_test])
return y_pred
def _score_slices(y_true, list_y_pred, scorer, score_mode, cv):
"""Aux function of GeneralizationAcrossTime that loops across chunks of
testing slices.
"""
scores_list = list()
for y_pred in list_y_pred:
scores = list()
for t, this_y_pred in enumerate(y_pred):
if score_mode in ['mean-fold-wise', 'fold-wise']:
# Estimate score within each fold
scores_ = list()
for train, test in cv:
scores_.append(scorer(y_true[test], this_y_pred[test]))
scores_ = np.array(scores_)
# Summarize score as average across folds
if score_mode == 'mean-fold-wise':
scores_ = np.mean(scores_, axis=0)
elif score_mode == 'mean-sample-wise':
# Estimate score across all y_pred without cross-validation.
scores_ = scorer(y_true, this_y_pred)
scores.append(scores_)
scores_list.append(scores)
return scores_list
def _check_epochs_input(epochs, y, picks=None):
"""Aux function of GeneralizationAcrossTime
Format MNE data into scikit-learn X and y.
Parameters
----------
epochs : instance of Epochs
The epochs.
y : ndarray shape (n_epochs) | list shape (n_epochs) | None
To-be-fitted model. If y is None, y == epochs.events.
picks : array-like of int | None
The channels indices to include. If None the data
channels in info, except bad channels, are used.
Returns
-------
X : ndarray, shape (n_epochs, n_selected_chans, n_times)
To-be-fitted data.
y : ndarray, shape (n_epochs,)
To-be-fitted model.
picks : array-like of int | None
The channels indices to include. If None the data
channels in info, except bad channels, are used.
"""
if y is None:
y = epochs.events[:, 2]
elif isinstance(y, list):
y = np.array(y)
# Convert MNE data into trials x features x time matrix
X = epochs.get_data()
# Pick channels
if picks is None: # just use good data channels
picks = _pick_data_channels(epochs.info, with_ref_meg=False)
if isinstance(picks, (list, np.ndarray)):
picks = np.array(picks, dtype=np.int)
else:
raise ValueError('picks must be a list or a numpy.ndarray of int')
X = X[:, picks, :]
# Check data sets
assert X.shape[0] == y.shape[0]
return X, y, picks
def _fit_slices(clf, x_chunk, y, slices, cv_splits):
"""Aux function of GeneralizationAcrossTime
Fit each classifier.
Parameters
----------
clf : scikit-learn classifier
The classifier object.
x_chunk : ndarray, shape (n_epochs, n_features, n_times)
To-be-fitted data.
y : list | array, shape (n_epochs,)
To-be-fitted model.
slices : list | array, shape (n_training_slice,)
List of training slices, indicating time sample relative to X
cv_splits : list of tuples
List of (train, test) tuples generated from cv.split()
Returns
-------
estimators : list of lists of estimators
List of fitted scikit-learn classifiers corresponding to each training
slice.
"""
from sklearn.base import clone
# Initialize
n_epochs = len(x_chunk)
estimators = list()
# Identify the time samples of X_chunck corresponding to X
values = np.unique([val for sl in slices for val in sl])
# Loop across time slices
for t_slice in slices:
# Translate absolute time samples into time sample relative to x_chunk
t_slice = np.array([np.where(ii == values)[0][0] for ii in t_slice])
# Select slice
X = x_chunk[..., t_slice]
# Reshape data matrix to flatten features if multiple time samples.
X = X.reshape(n_epochs, np.prod(X.shape[1:]))
# Loop across folds
estimators_ = list()
for fold, (train, test) in enumerate(cv_splits):
# Fit classifier
clf_ = clone(clf)
clf_.fit(X[train, :], y[train])
estimators_.append(clf_)
# Store classifier
estimators.append(estimators_)
return estimators
def _sliding_window(times, window, sfreq):
"""Aux function of GeneralizationAcrossTime
Define the slices on which to train each classifier. The user either define
the time slices manually in window['slices'] or s/he passes optional params
to set them from window['start'], window['stop'], window['step'] and
window['length'].
Parameters
----------
times : ndarray, shape (n_times,)
Array of times from MNE epochs.
window : dict keys: ('start', 'stop', 'step', 'length')
Either train or test times.
Returns
-------
window : dict
Dictionary to set training and testing times.
See Also
--------
GeneralizationAcrossTime
"""
import copy
window = _DecodingTime(copy.deepcopy(window))
# Default values
time_slices = window.get('slices', None)
# If the user hasn't manually defined the time slices, we'll define them
# with ``start``, ``stop``, ``step`` and ``length`` parameters.
if time_slices is None:
window['start'] = window.get('start', times[0])
window['stop'] = window.get('stop', times[-1])
window['step'] = window.get('step', 1. / sfreq)
window['length'] = window.get('length', 1. / sfreq)
if not (times[0] <= window['start'] <= times[-1]):
raise ValueError(
'start (%.2f s) outside time range [%.2f, %.2f].' % (
window['start'], times[0], times[-1]))
if not (times[0] <= window['stop'] <= times[-1]):
raise ValueError(
'stop (%.2f s) outside time range [%.2f, %.2f].' % (
window['stop'], times[0], times[-1]))
if window['step'] < 1. / sfreq:
raise ValueError('step must be >= 1 / sampling_frequency')
if window['length'] < 1. / sfreq:
raise ValueError('length must be >= 1 / sampling_frequency')
if window['length'] > np.ptp(times):
raise ValueError('length must be <= time range')
# Convert seconds to index
def find_t_idx(t): # find closest time point
return np.argmin(np.abs(np.asarray(times) - t))
start = find_t_idx(window['start'])
stop = find_t_idx(window['stop'])
step = int(round(window['step'] * sfreq))
length = int(round(window['length'] * sfreq))
# For each training slice, give time samples to be included
time_slices = [range(start, start + length)]
while (time_slices[-1][0] + step) <= (stop - length + 1):
start = time_slices[-1][0] + step
time_slices.append(range(start, start + length))
window['slices'] = time_slices
window['times'] = _set_window_time(window['slices'], times)
return window
def _set_window_time(slices, times):
"""Aux function to define time as the last training time point"""
t_idx_ = [t[-1] for t in slices]
return times[t_idx_]
def _predict(X, estimators, vectorize_times, predict_method):
"""Aux function of GeneralizationAcrossTime
Predict each classifier. If multiple classifiers are passed, average
prediction across all classifiers to result in a single prediction per
classifier.
Parameters
----------
estimators : ndarray, shape (n_folds,) | shape (1,)
Array of scikit-learn classifiers to predict data.
X : ndarray, shape (n_epochs, n_features, n_times)
To-be-predicted data
vectorize_times : bool
If True, X can be vectorized to predict all times points at once
predict_method : str
Name of the method used to make predictions from the estimator. For
example, both `predict_proba` and `predict` are supported for
sklearn.linear_model.LogisticRegression. Note that the scorer must be
adapted to the prediction outputs of the method. Defaults to 'predict'.
Returns
-------
y_pred : ndarray, shape (n_epochs, m_prediction_dimensions)
Classifier's prediction for each trial.
"""
from scipy import stats
from sklearn.base import is_classifier
# Initialize results:
orig_shape = X.shape
n_epochs = orig_shape[0]
n_times = orig_shape[-1]
n_clf = len(estimators)
# in simple case, we are predicting each time sample as if it
# was a different epoch
if vectorize_times: # treat times as trials for optimization
X = np.hstack(X).T # XXX JRK: still 17% of cpu time
n_epochs_tmp = len(X)
# Compute prediction for each sub-estimator (i.e. per fold)
# if independent, estimators = all folds
for fold, clf in enumerate(estimators):
_y_pred = getattr(clf, predict_method)(X)
# See inconsistency in dimensionality: scikit-learn/scikit-learn#5058
if _y_pred.ndim == 1:
_y_pred = _y_pred[:, None]
# initialize predict_results array
if fold == 0:
predict_size = _y_pred.shape[1]
y_pred = np.ones((n_epochs_tmp, predict_size, n_clf))
y_pred[:, :, fold] = _y_pred
# Bagging: Collapse y_pred across folds if necessary (i.e. if independent)
# XXX need API to identify how multiple predictions can be combined?
if fold > 0:
if is_classifier(clf) and (predict_method == 'predict'):
y_pred, _ = stats.mode(y_pred, axis=2)
else:
y_pred = np.mean(y_pred, axis=2, keepdims=True)
y_pred = y_pred[:, :, 0]
# Format shape
if vectorize_times:
shape = [n_epochs, n_times, y_pred.shape[-1]]
y_pred = y_pred.reshape(shape).transpose([1, 0, 2])
return y_pred
class GeneralizationAcrossTime(_GeneralizationAcrossTime):
"""Generalize across time and conditions
Creates an estimator object used to 1) fit a series of classifiers on
multidimensional time-resolved data, and 2) test the ability of each
classifier to generalize across other time samples, as in [1]_.
Parameters
----------
picks : array-like of int | None
The channels indices to include. If None the data
channels in info, except bad channels, are used.
cv : int | object
If an integer is passed, it is the number of folds.
Specific cross-validation objects can be passed, see
scikit-learn.cross_validation module for the list of possible objects.
If clf is a classifier, defaults to StratifiedKFold(n_folds=5), else
defaults to KFold(n_folds=5).
clf : object | None
An estimator compliant with the scikit-learn API (fit & predict).
If None the classifier will be a standard pipeline including
StandardScaler and LogisticRegression with default parameters.
train_times : dict | None
A dictionary to configure the training times:
* ``slices`` : ndarray, shape (n_clfs,)
Array of time slices (in indices) used for each classifier.
If not given, computed from 'start', 'stop', 'length', 'step'.
* ``start`` : float
Time at which to start decoding (in seconds).
Defaults to min(epochs.times).
* ``stop`` : float
Maximal time at which to stop decoding (in seconds).
Defaults to max(times).
* ``step`` : float
Duration separating the start of subsequent classifiers (in
seconds). Defaults to one time sample.
* ``length`` : float
Duration of each classifier (in seconds).
Defaults to one time sample.
If None, empty dict.
test_times : 'diagonal' | dict | None, optional
Configures the testing times.
If set to 'diagonal', predictions are made at the time at which
each classifier is trained.
If set to None, predictions are made at all time points.
If set to dict, the dict should contain ``slices`` or be contructed in
a similar way to train_times:
``slices`` : ndarray, shape (n_clfs,)
Array of time slices (in indices) used for each classifier.
If not given, computed from 'start', 'stop', 'length', 'step'.
If None, empty dict.
predict_method : str
Name of the method used to make predictions from the estimator. For
example, both `predict_proba` and `predict` are supported for
sklearn.linear_model.LogisticRegression. Note that the scorer must be
adapted to the prediction outputs of the method. Defaults to 'predict'.
predict_mode : {'cross-validation', 'mean-prediction'}
Indicates how predictions are achieved with regards to the cross-
validation procedure:
* ``cross-validation`` : estimates a single prediction per sample
based on the unique independent classifier fitted in the
cross-validation.
* ``mean-prediction`` : estimates k predictions per sample, based
on each of the k-fold cross-validation classifiers, and average
these predictions into a single estimate per sample.
Defaults to 'cross-validation'.
scorer : object | None | str
scikit-learn Scorer instance or str type indicating the name of the
scorer such as ``accuracy``, ``roc_auc``. If None, set to ``accuracy``.
score_mode : {'fold-wise', 'mean-fold-wise', 'mean-sample-wise'}
Determines how the scorer is estimated:
* ``fold-wise`` : returns the score obtained in each fold.
* ``mean-fold-wise`` : returns the average of the fold-wise scores.
* ``mean-sample-wise`` : returns score estimated across across all
y_pred independently of the cross-validation. This method is
faster than ``mean-fold-wise`` but less conventional, use at
your own risk.
Defaults to 'mean-fold-wise'.
n_jobs : int
Number of jobs to run in parallel. Defaults to 1.
Attributes
----------
``picks_`` : array-like of int | None
The channels indices to include.
ch_names : list, array-like, shape (n_channels,)
Names of the channels used for training.
``y_train_`` : list | ndarray, shape (n_samples,)
The categories used for training.
``train_times_`` : dict
A dictionary that configures the training times:
* ``slices`` : ndarray, shape (n_clfs,)
Array of time slices (in indices) used for each classifier.
If not given, computed from 'start', 'stop', 'length', 'step'.
* ``times`` : ndarray, shape (n_clfs,)
The training times (in seconds).
``test_times_`` : dict
A dictionary that configures the testing times for each training time:
``slices`` : ndarray, shape (n_clfs, n_testing_times)
Array of time slices (in indices) used for each classifier.
``times`` : ndarray, shape (n_clfs, n_testing_times)
The testing times (in seconds) for each training time.
``cv_`` : CrossValidation object
The actual CrossValidation input depending on y.
``estimators_`` : list of list of scikit-learn.base.BaseEstimator subclasses.
The estimators for each time point and each fold.
``y_pred_`` : list of lists of arrays of floats, shape (n_train_times, n_test_times, n_epochs, n_prediction_dims)
The single-trial predictions estimated by self.predict() at each
training time and each testing time. Note that the number of testing
times per training time need not be regular, else
``np.shape(y_pred_) = (n_train_time, n_test_time, n_epochs).``
``y_true_`` : list | ndarray, shape (n_samples,)
The categories used for scoring ``y_pred_``.
``scorer_`` : object
scikit-learn Scorer instance.
``scores_`` : list of lists of float
The scores estimated by ``self.scorer_`` at each training time and each
testing time (e.g. mean accuracy of self.predict(X)). Note that the
number of testing times per training time need not be regular;
else, ``np.shape(scores) = (n_train_time, n_test_time)``.
See Also
--------
TimeDecoding
References
----------
.. [1] Jean-Remi King, Alexandre Gramfort, Aaron Schurger, Lionel Naccache
and Stanislas Dehaene, "Two distinct dynamic modes subtend the
detection of unexpected sounds", PLoS ONE, 2014
DOI: 10.1371/journal.pone.0085791
.. versionadded:: 0.9.0
""" # noqa
def __init__(self, picks=None, cv=5, clf=None, train_times=None,
test_times=None, predict_method='predict',
predict_mode='cross-validation', scorer=None,
score_mode='mean-fold-wise', n_jobs=1):
super(GeneralizationAcrossTime, self).__init__(
picks=picks, cv=cv, clf=clf, train_times=train_times,
test_times=test_times, predict_method=predict_method,
predict_mode=predict_mode, scorer=scorer, score_mode=score_mode,
n_jobs=n_jobs)
def __repr__(self):
s = ''
if hasattr(self, "estimators_"):
s += "fitted, start : %0.3f (s), stop : %0.3f (s)" % (
self.train_times_.get('start', np.nan),
self.train_times_.get('stop', np.nan))
else:
s += 'no fit'
if hasattr(self, 'y_pred_'):
s += (", predicted %d epochs" % len(self.y_pred_[0][0]))
else:
s += ", no prediction"
if hasattr(self, "estimators_") and hasattr(self, 'scores_'):
s += ',\n '
else:
s += ', '
if hasattr(self, 'scores_'):
s += "scored"
if callable(self.scorer_):
s += " (%s)" % (self.scorer_.__name__)
else:
s += "no score"
return "<GAT | %s>" % s
def plot(self, title=None, vmin=None, vmax=None, tlim=None, ax=None,
cmap='RdBu_r', show=True, colorbar=True,
xlabel=True, ylabel=True):
"""Plotting function of GeneralizationAcrossTime object
Plot the score of each classifier at each tested time window.
Parameters
----------
title : str | None
Figure title.
vmin : float | None
Min color value for scores. If None, sets to min(``gat.scores_``).
vmax : float | None
Max color value for scores. If None, sets to max(``gat.scores_``).
tlim : ndarray, (train_min, test_max) | None
The time limits used for plotting.
ax : object | None
Plot pointer. If None, generate new figure.
cmap : str | cmap object
The color map to be used. Defaults to ``'RdBu_r'``.
show : bool
If True, the figure will be shown. Defaults to True.
colorbar : bool
If True, the colorbar of the figure is displayed. Defaults to True.
xlabel : bool
If True, the xlabel is displayed. Defaults to True.
ylabel : bool
If True, the ylabel is displayed. Defaults to True.
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
return plot_gat_matrix(self, title=title, vmin=vmin, vmax=vmax,
tlim=tlim, ax=ax, cmap=cmap, show=show,
colorbar=colorbar, xlabel=xlabel, ylabel=ylabel)
def plot_diagonal(self, title=None, xmin=None, xmax=None, ymin=None,
ymax=None, ax=None, show=True, color=None,
xlabel=True, ylabel=True, legend=True, chance=True,
label='Classif. score'):
"""Plotting function of GeneralizationAcrossTime object
Plot each classifier score trained and tested at identical time
windows.
Parameters
----------
title : str | None
Figure title.
xmin : float | None, optional
Min time value.
xmax : float | None, optional
Max time value.
ymin : float | None, optional
Min score value. If None, sets to min(scores).
ymax : float | None, optional
Max score value. If None, sets to max(scores).
ax : object | None
Instance of mataplotlib.axes.Axis. If None, generate new figure.
show : bool
If True, the figure will be shown. Defaults to True.
color : str
Score line color.
xlabel : bool
If True, the xlabel is displayed. Defaults to True.
ylabel : bool
If True, the ylabel is displayed. Defaults to True.
legend : bool
If True, a legend is displayed. Defaults to True.
chance : bool | float. Defaults to None
Plot chance level. If True, chance level is estimated from the type
of scorer.
label : str
Score label used in the legend. Defaults to 'Classif. score'.
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
return plot_gat_times(self, train_time='diagonal', title=title,
xmin=xmin, xmax=xmax,
ymin=ymin, ymax=ymax, ax=ax, show=show,
color=color, xlabel=xlabel, ylabel=ylabel,
legend=legend, chance=chance, label=label)
def plot_times(self, train_time, title=None, xmin=None, xmax=None,
ymin=None, ymax=None, ax=None, show=True, color=None,
xlabel=True, ylabel=True, legend=True, chance=True,
label='Classif. score'):
"""Plotting function of GeneralizationAcrossTime object
Plot the scores of the classifier trained at specific training time(s).
Parameters
----------
train_time : float | list or array of float
Plots scores of the classifier trained at train_time.
title : str | None
Figure title.
xmin : float | None, optional
Min time value.
xmax : float | None, optional
Max time value.
ymin : float | None, optional
Min score value. If None, sets to min(scores).
ymax : float | None, optional
Max score value. If None, sets to max(scores).
ax : object | None
Instance of mataplotlib.axes.Axis. If None, generate new figure.
show : bool
If True, the figure will be shown. Defaults to True.
color : str or list of str
Score line color(s).
xlabel : bool
If True, the xlabel is displayed. Defaults to True.
ylabel : bool
If True, the ylabel is displayed. Defaults to True.
legend : bool
If True, a legend is displayed. Defaults to True.
chance : bool | float.
Plot chance level. If True, chance level is estimated from the type
of scorer.
label : str
Score label used in the legend. Defaults to 'Classif. score'.
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
if not np.array(train_time).dtype is np.dtype('float'):
raise ValueError('train_time must be float | list or array of '
'floats. Got %s.' % type(train_time))
return plot_gat_times(self, train_time=train_time, title=title,
xmin=xmin, xmax=xmax,
ymin=ymin, ymax=ymax, ax=ax, show=show,
color=color, xlabel=xlabel, ylabel=ylabel,
legend=legend, chance=chance, label=label)
class TimeDecoding(_GeneralizationAcrossTime):
"""Train and test a series of classifiers at each time point to obtain a
score across time.
Parameters
----------
picks : array-like of int | None
The channels indices to include. If None the data
channels in info, except bad channels, are used.
cv : int | object
If an integer is passed, it is the number of folds.
Specific cross-validation objects can be passed, see
scikit-learn.cross_validation module for the list of possible objects.
If clf is a classifier, defaults to StratifiedKFold(n_folds=5), else
defaults to KFold(n_folds=5).
clf : object | None
An estimator compliant with the scikit-learn API (fit & predict).
If None the classifier will be a standard pipeline including
StandardScaler and a Logistic Regression with default parameters.
times : dict | None
A dictionary to configure the training times:
``slices`` : ndarray, shape (n_clfs,)
Array of time slices (in indices) used for each classifier.
If not given, computed from 'start', 'stop', 'length', 'step'.
``start`` : float
Time at which to start decoding (in seconds). By default,
min(epochs.times).
``stop`` : float
Maximal time at which to stop decoding (in seconds). By
default, max(times).
``step`` : float
Duration separating the start of subsequent classifiers (in
seconds). By default, equals one time sample.
``length`` : float
Duration of each classifier (in seconds). By default, equals
one time sample.
If None, empty dict.
predict_method : str
Name of the method used to make predictions from the estimator. For
example, both `predict_proba` and `predict` are supported for
sklearn.linear_model.LogisticRegression. Note that the scorer must be
adapted to the prediction outputs of the method. Defaults to 'predict'.
predict_mode : {'cross-validation', 'mean-prediction'}
Indicates how predictions are achieved with regards to the cross-
validation procedure:
* ``cross-validation`` : estimates a single prediction per sample
based on the unique independent classifier fitted in the
cross-validation.
* ``mean-prediction`` : estimates k predictions per sample, based
on each of the k-fold cross-validation classifiers, and average
these predictions into a single estimate per sample.
Defaults to 'cross-validation'.
scorer : object | None | str
scikit-learn Scorer instance or str type indicating the name of the
scorer such as ``accuracy``, ``roc_auc``. If None, set to ``accuracy``.
score_mode : {'fold-wise', 'mean-fold-wise', 'mean-sample-wise'}
Determines how the scorer is estimated:
* ``fold-wise`` : returns the score obtained in each fold.
* ``mean-fold-wise`` : returns the average of the fold-wise scores.
* ``mean-sample-wise`` : returns score estimated across across all
y_pred independently of the cross-validation. This method is
faster than ``mean-fold-wise`` but less conventional, use at
your own risk.
Defaults to 'mean-fold-wise'.
n_jobs : int
Number of jobs to run in parallel. Defaults to 1.
Attributes
----------
``picks_`` : array-like of int | None
The channels indices to include.
ch_names : list, array-like, shape (n_channels,)
Names of the channels used for training.
``y_train_`` : ndarray, shape (n_samples,)
The categories used for training.
``times_`` : dict
A dictionary that configures the training times:
* ``slices`` : ndarray, shape (n_clfs,)
Array of time slices (in indices) used for each classifier.
If not given, computed from 'start', 'stop', 'length', 'step'.
* ``times`` : ndarray, shape (n_clfs,)
The training times (in seconds).
``cv_`` : CrossValidation object
The actual CrossValidation input depending on y.
``estimators_`` : list of list of scikit-learn.base.BaseEstimator subclasses.
The estimators for each time point and each fold.
``y_pred_`` : ndarray, shape (n_times, n_epochs, n_prediction_dims)
Class labels for samples in X.
``y_true_`` : list | ndarray, shape (n_samples,)
The categories used for scoring ``y_pred_``.
``scorer_`` : object
scikit-learn Scorer instance.
``scores_`` : list of float, shape (n_times,)
The scores (mean accuracy of self.predict(X) wrt. y.).
See Also
--------
GeneralizationAcrossTime
Notes
-----
The function is equivalent to the diagonal of GeneralizationAcrossTime()
.. versionadded:: 0.10
""" # noqa
def __init__(self, picks=None, cv=5, clf=None, times=None,
predict_method='predict', predict_mode='cross-validation',
scorer=None, score_mode='mean-fold-wise', n_jobs=1):
super(TimeDecoding, self).__init__(picks=picks, cv=cv, clf=clf,
train_times=times,
test_times='diagonal',
predict_method=predict_method,
predict_mode=predict_mode,
scorer=scorer,
score_mode=score_mode,
n_jobs=n_jobs)
self._clean_times()
def __repr__(self):
s = ''
if hasattr(self, "estimators_"):
s += "fitted, start : %0.3f (s), stop : %0.3f (s)" % (
self.times_.get('start', np.nan),
self.times_.get('stop', np.nan))
else:
s += 'no fit'
if hasattr(self, 'y_pred_'):
s += (", predicted %d epochs" % len(self.y_pred_[0]))
else:
s += ", no prediction"
if hasattr(self, "estimators_") and hasattr(self, 'scores_'):
s += ',\n '
else:
s += ', '
if hasattr(self, 'scores_'):
s += "scored"
if callable(self.scorer_):
s += " (%s)" % (self.scorer_.__name__)
else:
s += "no score"
return "<TimeDecoding | %s>" % s
def fit(self, epochs, y=None):
"""Train a classifier on each specified time slice.
.. note::
This function sets the ``picks_``, ``ch_names``, ``cv_``,
``y_train``, ``train_times_`` and ``estimators_`` attributes.
Parameters
----------
epochs : instance of Epochs
The epochs.
y : list or ndarray of int, shape (n_samples,) or None, optional
To-be-fitted model values. If None, y = epochs.events[:, 2].
Returns
-------
self : TimeDecoding
Returns fitted TimeDecoding object.
Notes
-----
If X and y are not C-ordered and contiguous arrays of np.float64 and
X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse
matrices as input.
"""
self._prep_times()
super(TimeDecoding, self).fit(epochs, y=y)
self._clean_times()
return self
def predict(self, epochs):
"""Test each classifier on each specified testing time slice.
.. note::
This function sets the ``y_pred_`` and ``test_times_`` attributes.
Parameters
----------
epochs : instance of Epochs
The epochs. Can be similar to fitted epochs or not. See
predict_mode parameter.
Returns
-------
y_pred : list of lists of arrays of floats, shape (n_times, n_epochs, n_prediction_dims)
The single-trial predictions at each time sample.
""" # noqa
self._prep_times()
super(TimeDecoding, self).predict(epochs)
self._clean_times()
return self.y_pred_
def score(self, epochs=None, y=None):
"""Score Epochs
Estimate scores across trials by comparing the prediction estimated for
each trial to its true value.
Calls ``predict()`` if it has not been already.
.. note::
The function updates the ``scorer_``, ``scores_``, and
``y_true_`` attributes.
.. note::
If ``predict_mode`` is 'mean-prediction', ``score_mode`` is
automatically set to 'mean-sample-wise'.
Parameters
----------
epochs : instance of Epochs | None, optional
The epochs. Can be similar to fitted epochs or not.
If None, it needs to rely on the predictions ``y_pred_``
generated with ``predict()``.
y : list | ndarray, shape (n_epochs,) | None, optional
True values to be compared with the predictions ``y_pred_``
generated with ``predict()`` via ``scorer_``.
If None and ``predict_mode``=='cross-validation' y = ``y_train_``.
Returns
-------
scores : list of float, shape (n_times,)
The scores estimated by ``scorer_`` at each time sample (e.g. mean
accuracy of ``predict(X)``).
"""
if epochs is not None:
self.predict(epochs)
else:
if not hasattr(self, 'y_pred_'):
raise RuntimeError('Please predict() epochs first or pass '
'epochs to score()')
self._prep_times()
super(TimeDecoding, self).score(epochs=None, y=y)
self._clean_times()
return self.scores_
def plot(self, title=None, xmin=None, xmax=None, ymin=None, ymax=None,
ax=None, show=True, color=None, xlabel=True, ylabel=True,
legend=True, chance=True, label='Classif. score'):
"""Plotting function
Predict each classifier. If multiple classifiers are passed, average
prediction across all classifiers to result in a single prediction per
classifier.
Parameters
----------
title : str | None
Figure title.
xmin : float | None, optional,
Min time value.
xmax : float | None, optional,
Max time value.
ymin : float
Min score value. Defaults to 0.
ymax : float
Max score value. Defaults to 1.
ax : object | None
Instance of mataplotlib.axes.Axis. If None, generate new figure.
show : bool
If True, the figure will be shown. Defaults to True.
color : str
Score line color. Defaults to 'steelblue'.
xlabel : bool
If True, the xlabel is displayed. Defaults to True.
ylabel : bool
If True, the ylabel is displayed. Defaults to True.
legend : bool
If True, a legend is displayed. Defaults to True.
chance : bool | float. Defaults to None
Plot chance level. If True, chance level is estimated from the type
of scorer.
label : str
Score label used in the legend. Defaults to 'Classif. score'.
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
# XXX JRK: need cleanup in viz
self._prep_times()
fig = plot_gat_times(self, train_time='diagonal', title=title,
xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ax=ax,
show=show, color=color, xlabel=xlabel,
ylabel=ylabel, legend=legend, chance=chance,
label=label)
self._clean_times()
return fig
def _prep_times(self):
"""Auxiliary function to allow compatibility with GAT"""
self.test_times = 'diagonal'
if hasattr(self, 'times'):
self.train_times = self.times
if hasattr(self, 'times_'):
self.train_times_ = self.times_
self.test_times_ = _DecodingTime()
self.test_times_['slices'] = [[slic] for slic in
self.train_times_['slices']]
self.test_times_['times'] = [[tim] for tim in
self.train_times_['times']]
if hasattr(self, 'scores_'):
self.scores_ = [[score] for score in self.scores_]
if hasattr(self, 'y_pred_'):
self.y_pred_ = [[y_pred] for y_pred in self.y_pred_]
def _clean_times(self):
"""Auxiliary function to allow compatibility with GAT"""
if hasattr(self, 'train_times'):
self.times = self.train_times
if hasattr(self, 'train_times_'):
self.times_ = self.train_times_
for attr in ['test_times', 'train_times',
'test_times_', 'train_times_']:
if hasattr(self, attr):
delattr(self, attr)
if hasattr(self, 'y_pred_'):
self.y_pred_ = [y_pred[0] for y_pred in self.y_pred_]
if hasattr(self, 'scores_'):
self.scores_ = [score[0] for score in self.scores_]
def _chunk_data(X, slices):
"""Smart chunking to avoid memory overload.
The parallelization is performed across time samples. To avoid overheads,
the X data is splitted into large chunks of different time sizes. To
avoid duplicating the memory load to each job, we only pass the time
samples that are required by each job. The indices of the training times
must be adjusted accordingly.
"""
# from object array to list
slices = [sl for sl in slices if len(sl)]
selected_times = np.hstack([np.ravel(sl) for sl in slices])
start = np.min(selected_times)
stop = np.max(selected_times) + 1
slices_chunk = [sl - start for sl in slices]
X_chunk = X[:, :, start:stop]
return X_chunk, slices_chunk
|