1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
# Author: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)
import os
import re
import numpy as np
from numpy.testing import assert_allclose
from nose.tools import (assert_equal, assert_almost_equal, assert_false,
assert_raises, assert_true)
import warnings
import mne
from mne.datasets import testing
from mne.io.kit.tests import data_dir as kit_data_dir
from mne.utils import (_TempDir, requires_traits, requires_mne,
requires_freesurfer, run_tests_if_main, requires_mayavi)
from mne.externals.six import string_types
# backend needs to be set early
try:
from traits.etsconfig.api import ETSConfig
except ImportError:
pass
else:
ETSConfig.toolkit = 'qt4'
data_path = testing.data_path(download=False)
raw_path = os.path.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc_raw.fif')
fname_trans = os.path.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-trans.fif')
kit_raw_path = os.path.join(kit_data_dir, 'test_bin_raw.fif')
subjects_dir = os.path.join(data_path, 'subjects')
warnings.simplefilter('always')
@testing.requires_testing_data
@requires_traits
def test_coreg_model():
"""Test CoregModel"""
from mne.gui._coreg_gui import CoregModel
tempdir = _TempDir()
trans_dst = os.path.join(tempdir, 'test-trans.fif')
model = CoregModel()
assert_raises(RuntimeError, model.save_trans, 'blah.fif')
model.mri.use_high_res_head = False
model.mri.subjects_dir = subjects_dir
model.mri.subject = 'sample'
assert_false(model.mri.fid_ok)
model.mri.lpa = [[-0.06, 0, 0]]
model.mri.nasion = [[0, 0.05, 0]]
model.mri.rpa = [[0.08, 0, 0]]
assert_true(model.mri.fid_ok)
model.hsp.file = raw_path
assert_allclose(model.hsp.lpa, [[-7.137e-2, 0, 5.122e-9]], 1e-4)
assert_allclose(model.hsp.rpa, [[+7.527e-2, 0, 5.588e-9]], 1e-4)
assert_allclose(model.hsp.nasion, [[+3.725e-9, 1.026e-1, 4.191e-9]], 1e-4)
assert_true(model.has_fid_data)
lpa_distance = model.lpa_distance
nasion_distance = model.nasion_distance
rpa_distance = model.rpa_distance
avg_point_distance = np.mean(model.point_distance)
model.fit_auricular_points()
old_x = lpa_distance ** 2 + rpa_distance ** 2
new_x = model.lpa_distance ** 2 + model.rpa_distance ** 2
assert_true(new_x < old_x)
model.fit_fiducials()
old_x = lpa_distance ** 2 + rpa_distance ** 2 + nasion_distance ** 2
new_x = (model.lpa_distance ** 2 + model.rpa_distance ** 2 +
model.nasion_distance ** 2)
assert_true(new_x < old_x)
model.fit_hsp_points()
assert_true(np.mean(model.point_distance) < avg_point_distance)
model.save_trans(trans_dst)
trans = mne.read_trans(trans_dst)
assert_allclose(trans['trans'], model.head_mri_trans)
# test restoring trans
x, y, z, rot_x, rot_y, rot_z = .1, .2, .05, 1.5, 0.1, -1.2
model.trans_x = x
model.trans_y = y
model.trans_z = z
model.rot_x = rot_x
model.rot_y = rot_y
model.rot_z = rot_z
trans = model.head_mri_trans
model.reset_traits(["trans_x", "trans_y", "trans_z", "rot_x", "rot_y",
"rot_z"])
assert_equal(model.trans_x, 0)
model.set_trans(trans)
assert_almost_equal(model.trans_x, x)
assert_almost_equal(model.trans_y, y)
assert_almost_equal(model.trans_z, z)
assert_almost_equal(model.rot_x, rot_x)
assert_almost_equal(model.rot_y, rot_y)
assert_almost_equal(model.rot_z, rot_z)
# info
assert_true(isinstance(model.fid_eval_str, string_types))
assert_true(isinstance(model.points_eval_str, string_types))
# scaling job
sdir, sfrom, sto, scale, skip_fiducials, bemsol = \
model.get_scaling_job('sample2', False, True)
assert_equal(sdir, subjects_dir)
assert_equal(sfrom, 'sample')
assert_equal(sto, 'sample2')
assert_equal(scale, model.scale)
assert_equal(skip_fiducials, False)
# find BEM files
bems = set()
for fname in os.listdir(os.path.join(subjects_dir, 'sample', 'bem')):
match = re.match('sample-(.+-bem)\.fif', fname)
if match:
bems.add(match.group(1))
assert_equal(set(bemsol), bems)
sdir, sfrom, sto, scale, skip_fiducials, bemsol = \
model.get_scaling_job('sample2', True, False)
assert_equal(bemsol, [])
assert_true(skip_fiducials)
model.load_trans(fname_trans)
from mne.gui._coreg_gui import CoregFrame
x = CoregFrame(raw_path, 'sample', subjects_dir)
os.environ['_MNE_GUI_TESTING_MODE'] = 'true'
try:
with warnings.catch_warnings(record=True): # traits spews warnings
warnings.simplefilter('always')
x._init_plot()
finally:
del os.environ['_MNE_GUI_TESTING_MODE']
@testing.requires_testing_data
@requires_traits
@requires_mne
@requires_freesurfer
def test_coreg_model_with_fsaverage():
"""Test CoregModel with the fsaverage brain data"""
tempdir = _TempDir()
from mne.gui._coreg_gui import CoregModel
mne.create_default_subject(subjects_dir=tempdir)
model = CoregModel()
model.mri.use_high_res_head = False
model.mri.subjects_dir = tempdir
model.mri.subject = 'fsaverage'
assert_true(model.mri.fid_ok)
model.hsp.file = raw_path
lpa_distance = model.lpa_distance
nasion_distance = model.nasion_distance
rpa_distance = model.rpa_distance
avg_point_distance = np.mean(model.point_distance)
# test hsp point omission
model.trans_y = -0.008
model.fit_auricular_points()
model.omit_hsp_points(0.02)
assert_equal(model.hsp.n_omitted, 1)
model.omit_hsp_points(reset=True)
assert_equal(model.hsp.n_omitted, 0)
model.omit_hsp_points(0.02, reset=True)
assert_equal(model.hsp.n_omitted, 1)
# scale with 1 parameter
model.n_scale_params = 1
model.fit_scale_auricular_points()
old_x = lpa_distance ** 2 + rpa_distance ** 2
new_x = model.lpa_distance ** 2 + model.rpa_distance ** 2
assert_true(new_x < old_x)
model.fit_scale_fiducials()
old_x = lpa_distance ** 2 + rpa_distance ** 2 + nasion_distance ** 2
new_x = (model.lpa_distance ** 2 + model.rpa_distance ** 2 +
model.nasion_distance ** 2)
assert_true(new_x < old_x)
model.fit_scale_hsp_points()
avg_point_distance_1param = np.mean(model.point_distance)
assert_true(avg_point_distance_1param < avg_point_distance)
# scaling job
sdir, sfrom, sto, scale, skip_fiducials, bemsol = \
model.get_scaling_job('scaled', False, True)
assert_equal(sdir, tempdir)
assert_equal(sfrom, 'fsaverage')
assert_equal(sto, 'scaled')
assert_equal(scale, model.scale)
assert_equal(set(bemsol), set(('inner_skull-bem',)))
sdir, sfrom, sto, scale, skip_fiducials, bemsol = \
model.get_scaling_job('scaled', False, False)
assert_equal(bemsol, [])
# scale with 3 parameters
model.n_scale_params = 3
model.fit_scale_hsp_points()
assert_true(np.mean(model.point_distance) < avg_point_distance_1param)
# test switching raw disables point omission
assert_equal(model.hsp.n_omitted, 1)
with warnings.catch_warnings(record=True):
model.hsp.file = kit_raw_path
assert_equal(model.hsp.n_omitted, 0)
@testing.requires_testing_data
@requires_mayavi
def test_coreg_gui():
"""Test Coregistration GUI"""
from mne.gui._coreg_gui import CoregFrame
frame = CoregFrame()
frame.edit_traits()
frame.model.mri.subjects_dir = subjects_dir
frame.model.mri.subject = 'sample'
assert_false(frame.model.mri.fid_ok)
frame.model.mri.lpa = [[-0.06, 0, 0]]
frame.model.mri.nasion = [[0, 0.05, 0]]
frame.model.mri.rpa = [[0.08, 0, 0]]
assert_true(frame.model.mri.fid_ok)
run_tests_if_main()
|