1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#
# License: Simplified BSD
import os.path as op
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_allclose
from nose.tools import assert_true, assert_equal
from mne.datasets import testing
from mne.label import read_label
from mne import read_cov, read_forward_solution, read_evokeds
from mne.inverse_sparse import mixed_norm, tf_mixed_norm
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.utils import run_tests_if_main, slow_test
data_path = testing.data_path(download=False)
# NOTE: These use the ave and cov from sample dataset (no _trunc)
fname_data = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label = 'Aud-rh'
fname_label = op.join(data_path, 'MEG', 'sample', 'labels', '%s.label' % label)
@slow_test
@testing.requires_testing_data
def test_mxne_inverse():
"""Test (TF-)MxNE inverse computation"""
# Read noise covariance matrix
cov = read_cov(fname_cov)
# Handling average file
loose = None
depth = 0.9
evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked.crop(tmin=-0.05, tmax=0.2)
evoked_l21 = evoked.copy()
evoked_l21.crop(tmin=0.081, tmax=0.1)
label = read_label(fname_label)
forward = read_forward_solution(fname_fwd, force_fixed=False,
surf_ori=True)
# Reduce source space to make test computation faster
inverse_operator = make_inverse_operator(evoked_l21.info, forward, cov,
loose=loose, depth=depth,
fixed=True)
stc_dspm = apply_inverse(evoked_l21, inverse_operator, lambda2=1. / 9.,
method='dSPM')
stc_dspm.data[np.abs(stc_dspm.data) < 12] = 0.0
stc_dspm.data[np.abs(stc_dspm.data) >= 12] = 1.
weights_min = 0.5
# MxNE tests
alpha = 70 # spatial regularization parameter
stc_prox = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=500, tol=1e-8,
active_set_size=10, weights=stc_dspm,
weights_min=weights_min, solver='prox')
stc_cd = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=500, tol=1e-8, active_set_size=10,
weights=stc_dspm, weights_min=weights_min,
solver='cd')
stc_bcd = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=500, tol=1e-8, active_set_size=10,
weights=stc_dspm, weights_min=weights_min,
solver='bcd')
assert_array_almost_equal(stc_prox.times, evoked_l21.times, 5)
assert_array_almost_equal(stc_cd.times, evoked_l21.times, 5)
assert_array_almost_equal(stc_bcd.times, evoked_l21.times, 5)
assert_allclose(stc_prox.data, stc_cd.data, rtol=1e-3, atol=0.0)
assert_allclose(stc_prox.data, stc_bcd.data, rtol=1e-3, atol=0.0)
assert_allclose(stc_cd.data, stc_bcd.data, rtol=1e-3, atol=0.0)
assert_true(stc_prox.vertices[1][0] in label.vertices)
assert_true(stc_cd.vertices[1][0] in label.vertices)
assert_true(stc_bcd.vertices[1][0] in label.vertices)
stc, _ = mixed_norm(evoked_l21, forward, cov, alpha, loose=loose,
depth=depth, maxit=500, tol=1e-8,
active_set_size=10, return_residual=True,
solver='cd')
assert_array_almost_equal(stc.times, evoked_l21.times, 5)
assert_true(stc.vertices[1][0] in label.vertices)
# irMxNE tests
stc = mixed_norm(evoked_l21, forward, cov, alpha,
n_mxne_iter=5, loose=loose, depth=depth,
maxit=500, tol=1e-8, active_set_size=10,
solver='cd')
assert_array_almost_equal(stc.times, evoked_l21.times, 5)
assert_true(stc.vertices[1][0] in label.vertices)
assert_equal(stc.vertices, [[63152], [79017]])
# Do with TF-MxNE for test memory savings
alpha_space = 60. # spatial regularization parameter
alpha_time = 1. # temporal regularization parameter
stc, _ = tf_mixed_norm(evoked, forward, cov, alpha_space, alpha_time,
loose=loose, depth=depth, maxit=100, tol=1e-4,
tstep=4, wsize=16, window=0.1, weights=stc_dspm,
weights_min=weights_min, return_residual=True)
assert_array_almost_equal(stc.times, evoked.times, 5)
assert_true(stc.vertices[1][0] in label.vertices)
run_tests_if_main()
|