File: test_mxne_optim.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (196 lines) | stat: -rw-r--r-- 8,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Daniel Strohmeier <daniel.strohmeier@gmail.com>
#
# License: Simplified BSD

import numpy as np
import warnings
from numpy.testing import assert_array_equal, assert_array_almost_equal
from numpy.testing import assert_allclose

from mne.inverse_sparse.mxne_optim import (mixed_norm_solver,
                                           tf_mixed_norm_solver,
                                           iterative_mixed_norm_solver)

warnings.simplefilter('always')  # enable b/c these tests throw warnings


def _generate_tf_data():
    n, p, t = 30, 40, 64
    rng = np.random.RandomState(0)
    G = rng.randn(n, p)
    G /= np.std(G, axis=0)[None, :]
    X = np.zeros((p, t))
    active_set = [0, 4]
    times = np.linspace(0, 2 * np.pi, t)
    X[0] = np.sin(times)
    X[4] = -2 * np.sin(4 * times)
    X[4, times <= np.pi / 2] = 0
    X[4, times >= np.pi] = 0
    M = np.dot(G, X)
    M += 1 * rng.randn(*M.shape)
    return M, G, active_set


def test_l21_mxne():
    """Test convergence of MxNE solver"""
    n, p, t, alpha = 30, 40, 20, 1.
    rng = np.random.RandomState(0)
    G = rng.randn(n, p)
    G /= np.std(G, axis=0)[None, :]
    X = np.zeros((p, t))
    X[0] = 3
    X[4] = -2
    M = np.dot(G, X)

    args = (M, G, alpha, 1000, 1e-8)
    X_hat_prox, active_set, _ = mixed_norm_solver(
        *args, active_set_size=None,
        debias=True, solver='prox')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    X_hat_cd, active_set, _ = mixed_norm_solver(
        *args, active_set_size=None,
        debias=True, solver='cd')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    X_hat_bcd, active_set, _ = mixed_norm_solver(
        M, G, alpha, maxit=1000, tol=1e-8, active_set_size=None,
        debias=True, solver='bcd')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    assert_allclose(X_hat_prox, X_hat_cd, rtol=1e-2)
    assert_allclose(X_hat_prox, X_hat_bcd, rtol=1e-2)
    assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2)

    X_hat_prox, active_set, _ = mixed_norm_solver(
        *args, active_set_size=2, debias=True, solver='prox')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    X_hat_cd, active_set, _ = mixed_norm_solver(
        *args, active_set_size=2, debias=True, solver='cd')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    X_hat_bcd, active_set, _ = mixed_norm_solver(
        *args, active_set_size=2, debias=True, solver='bcd')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2)
    assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2)

    X_hat_prox, active_set, _ = mixed_norm_solver(
        *args, active_set_size=2, debias=True, n_orient=2, solver='prox')
    assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
    X_hat_bcd, active_set, _ = mixed_norm_solver(
        *args, active_set_size=2, debias=True, n_orient=2, solver='bcd')
    assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])

    # suppress a coordinate-descent warning here
    with warnings.catch_warnings(record=True):
        X_hat_cd, active_set, _ = mixed_norm_solver(
            *args, active_set_size=2, debias=True, n_orient=2, solver='cd')
    assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
    assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2)
    assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2)

    X_hat_bcd, active_set, _ = mixed_norm_solver(
        *args, active_set_size=2, debias=True, n_orient=5, solver='bcd')
    assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
    X_hat_prox, active_set, _ = mixed_norm_solver(
        *args, active_set_size=2, debias=True, n_orient=5, solver='prox')
    assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
    with warnings.catch_warnings(record=True):  # coordinate-ascent warning
        X_hat_cd, active_set, _ = mixed_norm_solver(
            *args, active_set_size=2, debias=True, n_orient=5, solver='cd')

    assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
    assert_array_equal(X_hat_bcd, X_hat_cd)
    assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2)


def test_tf_mxne():
    """Test convergence of TF-MxNE solver"""
    alpha_space = 10.
    alpha_time = 5.

    M, G, active_set = _generate_tf_data()

    X_hat_tf, active_set_hat_tf, E = tf_mixed_norm_solver(
        M, G, alpha_space, alpha_time, maxit=200, tol=1e-8, verbose=True,
        n_orient=1, tstep=4, wsize=32)
    assert_array_equal(np.where(active_set_hat_tf)[0], active_set)


def test_tf_mxne_vs_mxne():
    """Test equivalence of TF-MxNE (with alpha_time=0) and MxNE"""
    alpha_space = 60.
    alpha_time = 0.

    M, G, active_set = _generate_tf_data()

    X_hat_tf, active_set_hat_tf, E = tf_mixed_norm_solver(
        M, G, alpha_space, alpha_time, maxit=200, tol=1e-8, verbose=True,
        debias=False, n_orient=1, tstep=4, wsize=32)

    # Also run L21 and check that we get the same
    X_hat_l21, _, _ = mixed_norm_solver(
        M, G, alpha_space, maxit=200, tol=1e-8, verbose=False, n_orient=1,
        active_set_size=None, debias=False)

    assert_allclose(X_hat_tf, X_hat_l21, rtol=1e-1)


def test_iterative_reweighted_mxne():
    """Test convergence of irMxNE solver"""
    n, p, t, alpha = 30, 40, 20, 1
    rng = np.random.RandomState(0)
    G = rng.randn(n, p)
    G /= np.std(G, axis=0)[None, :]
    X = np.zeros((p, t))
    X[0] = 3
    X[4] = -2
    M = np.dot(G, X)

    X_hat_l21, _, _ = mixed_norm_solver(
        M, G, alpha, maxit=1000, tol=1e-8, verbose=False, n_orient=1,
        active_set_size=None, debias=False, solver='bcd')
    X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
        M, G, alpha, 1, maxit=1000, tol=1e-8, active_set_size=None,
        debias=False, solver='bcd')
    X_hat_prox, active_set, _ = iterative_mixed_norm_solver(
        M, G, alpha, 1, maxit=1000, tol=1e-8, active_set_size=None,
        debias=False, solver='prox')
    assert_allclose(X_hat_bcd, X_hat_l21, rtol=1e-3)
    assert_allclose(X_hat_prox, X_hat_l21, rtol=1e-3)

    X_hat_prox, active_set, _ = iterative_mixed_norm_solver(
        M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=None,
        debias=True, solver='prox')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
        M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
        debias=True, solver='bcd')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    X_hat_cd, active_set, _ = iterative_mixed_norm_solver(
        M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=None,
        debias=True, solver='cd')
    assert_array_equal(np.where(active_set)[0], [0, 4])
    assert_array_almost_equal(X_hat_prox, X_hat_cd, 5)
    assert_array_almost_equal(X_hat_bcd, X_hat_cd, 5)

    X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
        M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
        debias=True, n_orient=2, solver='bcd')
    assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
    # suppress a coordinate-descent warning here
    with warnings.catch_warnings(record=True):
        X_hat_cd, active_set, _ = iterative_mixed_norm_solver(
            M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
            debias=True, n_orient=2, solver='cd')
    assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5])
    assert_array_equal(X_hat_bcd, X_hat_cd, 5)

    X_hat_bcd, active_set, _ = iterative_mixed_norm_solver(
        M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2, debias=True,
        n_orient=5)
    assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
    with warnings.catch_warnings(record=True):  # coordinate-ascent warning
        X_hat_cd, active_set, _ = iterative_mixed_norm_solver(
            M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2,
            debias=True, n_orient=5, solver='cd')
    assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4])
    assert_array_equal(X_hat_bcd, X_hat_cd, 5)