File: test_array.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (118 lines) | stat: -rw-r--r-- 4,132 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
import warnings
import matplotlib

import numpy as np
from numpy.testing import assert_array_almost_equal, assert_allclose
from nose.tools import assert_equal, assert_raises, assert_true

from mne import find_events, Epochs, pick_types
from mne.io import read_raw_fif
from mne.io.array import RawArray
from mne.io.tests.test_raw import _test_raw_reader
from mne.io.meas_info import create_info, _kind_dict
from mne.utils import slow_test, requires_version, run_tests_if_main

matplotlib.use('Agg')  # for testing don't use X server

warnings.simplefilter('always')  # enable b/c these tests might throw warnings

base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data')
fif_fname = op.join(base_dir, 'test_raw.fif')


@slow_test
@requires_version('scipy', '0.12')
def test_array_raw():
    """Test creating raw from array
    """
    import matplotlib.pyplot as plt
    # creating
    raw = read_raw_fif(fif_fname, add_eeg_ref=False).crop(2, 5)
    data, times = raw[:, :]
    sfreq = raw.info['sfreq']
    ch_names = [(ch[4:] if 'STI' not in ch else ch)
                for ch in raw.info['ch_names']]  # change them, why not
    # del raw
    types = list()
    for ci in range(101):
        types.extend(('grad', 'grad', 'mag'))
    types.extend(['ecog', 'seeg', 'hbo'])  # really 3 meg channels
    types.extend(['stim'] * 9)
    types.extend(['eeg'] * 60)
    # wrong length
    assert_raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append('foo')
    assert_raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = 'eog'
    # default type
    info = create_info(ch_names, sfreq)
    assert_equal(info['chs'][0]['kind'], _kind_dict['misc'][0])
    # use real types
    info = create_info(ch_names, sfreq, types)
    raw2 = _test_raw_reader(RawArray, test_preloading=False,
                            data=data, info=info, first_samp=2 * data.shape[1])
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)
    assert_true('RawArray' in repr(raw2))
    assert_raises(TypeError, RawArray, info, data)

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude='bads')[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    raw_lp.filter(None, 4.0, h_trans_bandwidth=4.,
                  filter_length='auto', picks=picks, n_jobs=2, phase='zero',
                  fir_window='hamming')
    raw_hp = raw2.copy()
    raw_hp.filter(16.0, None, l_trans_bandwidth=4.,
                  filter_length='auto', picks=picks, n_jobs=2, phase='zero',
                  fir_window='hamming')
    raw_bp = raw2.copy()
    raw_bp.filter(8.0, 12.0, l_trans_bandwidth=4.,
                  h_trans_bandwidth=4., filter_length='auto', picks=picks,
                  phase='zero', fir_window='hamming')
    raw_bs = raw2.copy()
    raw_bs.filter(16.0, 4.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
                  filter_length='auto', picks=picks, n_jobs=2, phase='zero',
                  fir_window='hamming')
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 15
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    raw2.plot()
    raw2.plot_psd()
    plt.close('all')

    # epoching
    events = find_events(raw2, stim_channel='STI 014')
    events[:, 2] = 1
    assert_true(len(events) > 2)
    epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True,
                    add_eeg_ref=False)
    epochs.plot_drop_log()
    epochs.plot()
    evoked = epochs.average()
    evoked.plot()
    assert_equal(evoked.nave, len(events) - 1)
    plt.close('all')

    # complex data
    rng = np.random.RandomState(0)
    data = rng.randn(1, 100) + 1j * rng.randn(1, 100)
    raw = RawArray(data, create_info(1, 1000., 'eeg'))
    assert_allclose(raw._data, data)

run_tests_if_main()