File: test_reference.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (391 lines) | stat: -rw-r--r-- 16,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# Authors: Marijn van Vliet <w.m.vanvliet@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Teon Brooks <teon.brooks@gmail.com>
#
# License: BSD (3-clause)

import warnings
import os.path as op
import numpy as np

from nose.tools import assert_true, assert_equal, assert_raises
from numpy.testing import assert_array_equal, assert_allclose

from mne import (pick_channels, pick_types, Evoked, Epochs, read_events,
                 set_eeg_reference, set_bipolar_reference,
                 add_reference_channels)
from mne.epochs import _BaseEpochs
from mne.io import read_raw_fif
from mne.io.constants import FIFF
from mne.io.proj import _has_eeg_average_ref_proj
from mne.io.reference import _apply_reference
from mne.datasets import testing
from mne.utils import run_tests_if_main

warnings.simplefilter('always')  # enable b/c these tests throw warnings

data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample')
fif_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif')
eve_fname = op.join(data_dir, 'sample_audvis_trunc_raw-eve.fif')
ave_fname = op.join(data_dir, 'sample_audvis_trunc-ave.fif')


def _test_reference(raw, reref, ref_data, ref_from):
    """Test whether a reference has been correctly applied."""
    # Separate EEG channels from other channel types
    picks_eeg = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
    picks_other = pick_types(raw.info, meg=True, eeg=False, eog=True,
                             stim=True, exclude='bads')

    # Calculate indices of reference channesl
    picks_ref = [raw.ch_names.index(ch) for ch in ref_from]

    # Get data
    if isinstance(raw, Evoked):
        _data = raw.data
        _reref = reref.data
    else:
        _data = raw._data
        _reref = reref._data

    # Check that the ref has been properly computed
    assert_array_equal(ref_data, _data[..., picks_ref, :].mean(-2))

    # Get the raw EEG data and other channel data
    raw_eeg_data = _data[..., picks_eeg, :]
    raw_other_data = _data[..., picks_other, :]

    # Get the rereferenced EEG data
    reref_eeg_data = _reref[..., picks_eeg, :]
    reref_other_data = _reref[..., picks_other, :]

    # Undo rereferencing of EEG channels
    if isinstance(raw, _BaseEpochs):
        unref_eeg_data = reref_eeg_data + ref_data[:, np.newaxis, :]
    else:
        unref_eeg_data = reref_eeg_data + ref_data

    # Check that both EEG data and other data is the same
    assert_allclose(raw_eeg_data, unref_eeg_data, 1e-6, atol=1e-15)
    assert_allclose(raw_other_data, reref_other_data, 1e-6, atol=1e-15)


@testing.requires_testing_data
def test_apply_reference():
    """Test base function for rereferencing."""
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)

    # Rereference raw data by creating a copy of original data
    reref, ref_data = _apply_reference(
        raw.copy(), ref_from=['EEG 001', 'EEG 002'])
    assert_true(reref.info['custom_ref_applied'])
    _test_reference(raw, reref, ref_data, ['EEG 001', 'EEG 002'])

    # The CAR reference projection should have been removed by the function
    assert_true(not _has_eeg_average_ref_proj(reref.info['projs']))

    # Test that disabling the reference does not break anything
    reref, ref_data = _apply_reference(raw, [])
    assert_array_equal(raw._data, reref._data)

    # Test that data is modified in place when copy=False
    reref, ref_data = _apply_reference(raw, ['EEG 001', 'EEG 002'])
    assert_true(raw is reref)

    # Test re-referencing Epochs object
    raw = read_raw_fif(fif_fname, preload=False, add_eeg_ref=False)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, add_eeg_ref=False)
    reref, ref_data = _apply_reference(
        epochs.copy(), ref_from=['EEG 001', 'EEG 002'])
    assert_true(reref.info['custom_ref_applied'])
    _test_reference(epochs, reref, ref_data, ['EEG 001', 'EEG 002'])

    # Test re-referencing Evoked object
    evoked = epochs.average()
    reref, ref_data = _apply_reference(
        evoked.copy(), ref_from=['EEG 001', 'EEG 002'])
    assert_true(reref.info['custom_ref_applied'])
    _test_reference(evoked, reref, ref_data, ['EEG 001', 'EEG 002'])

    # Test invalid input
    raw_np = read_raw_fif(fif_fname, preload=False, add_eeg_ref=False)
    assert_raises(RuntimeError, _apply_reference, raw_np, ['EEG 001'])


@testing.requires_testing_data
def test_set_eeg_reference():
    """Test rereference eeg data."""
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)
    raw.info['projs'] = []

    # Test setting an average reference
    assert_true(not _has_eeg_average_ref_proj(raw.info['projs']))
    reref, ref_data = set_eeg_reference(raw)
    assert_true(_has_eeg_average_ref_proj(reref.info['projs']))
    assert_true(ref_data is None)

    # Test setting an average reference when one was already present
    with warnings.catch_warnings(record=True):  # weight tables
        reref, ref_data = set_eeg_reference(raw, copy=False)
    assert_true(ref_data is None)

    # Rereference raw data by creating a copy of original data
    reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'], copy=True)
    assert_true(reref.info['custom_ref_applied'])
    _test_reference(raw, reref, ref_data, ['EEG 001', 'EEG 002'])

    # Test that data is modified in place when copy=False
    reref, ref_data = set_eeg_reference(raw, ['EEG 001', 'EEG 002'],
                                        copy=False)
    assert_true(raw is reref)


@testing.requires_testing_data
def test_set_bipolar_reference():
    """Test bipolar referencing."""
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)
    reref = set_bipolar_reference(raw, 'EEG 001', 'EEG 002', 'bipolar',
                                  {'kind': FIFF.FIFFV_EOG_CH,
                                   'extra': 'some extra value'})
    assert_true(reref.info['custom_ref_applied'])

    # Compare result to a manual calculation
    a = raw.copy().pick_channels(['EEG 001', 'EEG 002'])
    a = a._data[0, :] - a._data[1, :]
    b = reref.copy().pick_channels(['bipolar'])._data[0, :]
    assert_allclose(a, b)

    # Original channels should be replaced by a virtual one
    assert_true('EEG 001' not in reref.ch_names)
    assert_true('EEG 002' not in reref.ch_names)
    assert_true('bipolar' in reref.ch_names)

    # Check channel information
    bp_info = reref.info['chs'][reref.ch_names.index('bipolar')]
    an_info = reref.info['chs'][raw.ch_names.index('EEG 001')]
    for key in bp_info:
        if key == 'loc':
            assert_array_equal(bp_info[key], 0)
        elif key == 'coil_type':
            assert_equal(bp_info[key], FIFF.FIFFV_COIL_EEG_BIPOLAR)
        elif key == 'kind':
            assert_equal(bp_info[key], FIFF.FIFFV_EOG_CH)
        else:
            assert_equal(bp_info[key], an_info[key])
    assert_equal(bp_info['extra'], 'some extra value')

    # Minimalist call
    reref = set_bipolar_reference(raw, 'EEG 001', 'EEG 002')
    assert_true('EEG 001-EEG 002' in reref.ch_names)

    # Set multiple references at once
    reref = set_bipolar_reference(
        raw,
        ['EEG 001', 'EEG 003'],
        ['EEG 002', 'EEG 004'],
        ['bipolar1', 'bipolar2'],
        [{'kind': FIFF.FIFFV_EOG_CH, 'extra': 'some extra value'},
         {'kind': FIFF.FIFFV_EOG_CH, 'extra': 'some extra value'}],
    )
    a = raw.copy().pick_channels(['EEG 001', 'EEG 002', 'EEG 003', 'EEG 004'])
    a = np.array([a._data[0, :] - a._data[1, :],
                  a._data[2, :] - a._data[3, :]])
    b = reref.copy().pick_channels(['bipolar1', 'bipolar2'])._data
    assert_allclose(a, b)

    # Test creating a bipolar reference that doesn't involve EEG channels:
    # it should not set the custom_ref_applied flag
    reref = set_bipolar_reference(raw, 'MEG 0111', 'MEG 0112',
                                  ch_info={'kind': FIFF.FIFFV_MEG_CH})
    assert_true(not reref.info['custom_ref_applied'])
    assert_true('MEG 0111-MEG 0112' in reref.ch_names)

    # Test a battery of invalid inputs
    assert_raises(ValueError, set_bipolar_reference, raw,
                  'EEG 001', ['EEG 002', 'EEG 003'], 'bipolar')
    assert_raises(ValueError, set_bipolar_reference, raw,
                  ['EEG 001', 'EEG 002'], 'EEG 003', 'bipolar')
    assert_raises(ValueError, set_bipolar_reference, raw,
                  'EEG 001', 'EEG 002', ['bipolar1', 'bipolar2'])
    assert_raises(ValueError, set_bipolar_reference, raw,
                  'EEG 001', 'EEG 002', 'bipolar',
                  ch_info=[{'foo': 'bar'}, {'foo': 'bar'}])
    assert_raises(ValueError, set_bipolar_reference, raw,
                  'EEG 001', 'EEG 002', ch_name='EEG 003')


def _check_channel_names(inst, ref_names):
    """Check channel names."""
    if isinstance(ref_names, str):
        ref_names = [ref_names]

    # Test that the names of the reference channels are present in `ch_names`
    ref_idx = pick_channels(inst.info['ch_names'], ref_names)
    assert_true(len(ref_idx), len(ref_names))

    # Test that the names of the reference channels are present in the `chs`
    # list
    inst.info._check_consistency()  # Should raise no exceptions


@testing.requires_testing_data
def test_add_reference():
    """Test adding a reference."""
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # check if channel already exists
    assert_raises(ValueError, add_reference_channels,
                  raw, raw.info['ch_names'][0])
    # add reference channel to Raw
    raw_ref = add_reference_channels(raw, 'Ref', copy=True)
    assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
    assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
    _check_channel_names(raw_ref, 'Ref')

    orig_nchan = raw.info['nchan']
    raw = add_reference_channels(raw, 'Ref', copy=False)
    assert_array_equal(raw._data, raw_ref._data)
    assert_equal(raw.info['nchan'], orig_nchan + 1)
    _check_channel_names(raw, 'Ref')

    # for Neuromag fif's, the reference electrode location is placed in
    # elements [3:6] of each "data" electrode location
    assert_allclose(raw.info['chs'][-1]['loc'][:3],
                    raw.info['chs'][picks_eeg[0]]['loc'][3:6], 1e-6)

    ref_idx = raw.ch_names.index('Ref')
    ref_data, _ = raw[ref_idx]
    assert_array_equal(ref_data, 0)

    # add reference channel to Raw when no digitization points exist
    raw = read_raw_fif(fif_fname, add_eeg_ref=False).crop(0, 1).load_data()
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    del raw.info['dig']

    raw_ref = add_reference_channels(raw, 'Ref', copy=True)

    assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 1)
    assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
    _check_channel_names(raw_ref, 'Ref')

    orig_nchan = raw.info['nchan']
    raw = add_reference_channels(raw, 'Ref', copy=False)
    assert_array_equal(raw._data, raw_ref._data)
    assert_equal(raw.info['nchan'], orig_nchan + 1)
    _check_channel_names(raw, 'Ref')

    # Test adding an existing channel as reference channel
    assert_raises(ValueError, add_reference_channels, raw,
                  raw.info['ch_names'][0])

    # add two reference channels to Raw
    raw_ref = add_reference_channels(raw, ['M1', 'M2'], copy=True)
    _check_channel_names(raw_ref, ['M1', 'M2'])
    assert_equal(raw_ref._data.shape[0], raw._data.shape[0] + 2)
    assert_array_equal(raw._data[picks_eeg, :], raw_ref._data[picks_eeg, :])
    assert_array_equal(raw_ref._data[-2:, :], 0)

    raw = add_reference_channels(raw, ['M1', 'M2'], copy=False)
    _check_channel_names(raw, ['M1', 'M2'])
    ref_idx = raw.ch_names.index('M1')
    ref_idy = raw.ch_names.index('M2')
    ref_data, _ = raw[[ref_idx, ref_idy]]
    assert_array_equal(ref_data, 0)

    # add reference channel to epochs
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, add_eeg_ref=False)
    # default: proj=True, after which adding a Ref channel is prohibited
    assert_raises(RuntimeError, add_reference_channels, epochs, 'Ref')

    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed',
                    add_eeg_ref=False)
    epochs_ref = add_reference_channels(epochs, 'Ref', copy=True)
    # CAR after custom reference is an Error
    assert_raises(RuntimeError, epochs_ref.set_eeg_reference)

    assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 1)
    _check_channel_names(epochs_ref, 'Ref')
    ref_idx = epochs_ref.ch_names.index('Ref')
    ref_data = epochs_ref.get_data()[:, ref_idx, :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
    assert_array_equal(epochs.get_data()[:, picks_eeg, :],
                       epochs_ref.get_data()[:, picks_eeg, :])

    # add two reference channels to epochs
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed',
                    add_eeg_ref=False)
    with warnings.catch_warnings(record=True):  # multiple set zero
        epochs_ref = add_reference_channels(epochs, ['M1', 'M2'], copy=True)
    assert_equal(epochs_ref._data.shape[1], epochs._data.shape[1] + 2)
    _check_channel_names(epochs_ref, ['M1', 'M2'])
    ref_idx = epochs_ref.ch_names.index('M1')
    ref_idy = epochs_ref.ch_names.index('M2')
    assert_equal(epochs_ref.info['chs'][ref_idx]['ch_name'], 'M1')
    assert_equal(epochs_ref.info['chs'][ref_idy]['ch_name'], 'M2')
    ref_data = epochs_ref.get_data()[:, [ref_idx, ref_idy], :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(epochs.info, meg=False, eeg=True)
    assert_array_equal(epochs.get_data()[:, picks_eeg, :],
                       epochs_ref.get_data()[:, picks_eeg, :])

    # add reference channel to evoked
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed',
                    add_eeg_ref=False)
    evoked = epochs.average()
    evoked_ref = add_reference_channels(evoked, 'Ref', copy=True)
    assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 1)
    _check_channel_names(evoked_ref, 'Ref')
    ref_idx = evoked_ref.ch_names.index('Ref')
    ref_data = evoked_ref.data[ref_idx, :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
    assert_array_equal(evoked.data[picks_eeg, :],
                       evoked_ref.data[picks_eeg, :])

    # add two reference channels to evoked
    raw = read_raw_fif(fif_fname, preload=True, add_eeg_ref=False)
    events = read_events(eve_fname)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    # create epochs in delayed mode, allowing removal of CAR when re-reffing
    epochs = Epochs(raw, events=events, event_id=1, tmin=-0.2, tmax=0.5,
                    picks=picks_eeg, preload=True, proj='delayed',
                    add_eeg_ref=False)
    evoked = epochs.average()
    with warnings.catch_warnings(record=True):  # multiple set zero
        evoked_ref = add_reference_channels(evoked, ['M1', 'M2'], copy=True)
    assert_equal(evoked_ref.data.shape[0], evoked.data.shape[0] + 2)
    _check_channel_names(evoked_ref, ['M1', 'M2'])
    ref_idx = evoked_ref.ch_names.index('M1')
    ref_idy = evoked_ref.ch_names.index('M2')
    ref_data = evoked_ref.data[[ref_idx, ref_idy], :]
    assert_array_equal(ref_data, 0)
    picks_eeg = pick_types(evoked.info, meg=False, eeg=True)
    assert_array_equal(evoked.data[picks_eeg, :],
                       evoked_ref.data[picks_eeg, :])

    # Test invalid inputs
    raw_np = read_raw_fif(fif_fname, preload=False, add_eeg_ref=False)
    assert_raises(RuntimeError, add_reference_channels, raw_np, ['Ref'])
    assert_raises(ValueError, add_reference_channels, raw, 1)

run_tests_if_main()