File: test_ica.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (684 lines) | stat: -rw-r--r-- 27,879 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
from __future__ import print_function

# Author: Denis Engemann <denis.engemann@gmail.com>
#         Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

import os
import os.path as op
import warnings

from nose.tools import assert_true, assert_raises, assert_equal, assert_false
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_allclose)
from scipy import stats
from itertools import product

from mne import Epochs, read_events, pick_types, create_info, EpochsArray
from mne.cov import read_cov
from mne.preprocessing import (ICA, ica_find_ecg_events, ica_find_eog_events,
                               read_ica, run_ica)
from mne.preprocessing.ica import (get_score_funcs, corrmap, _get_ica_map,
                                   _ica_explained_variance, _sort_components)
from mne.io import read_raw_fif, Info, RawArray
from mne.io.meas_info import _kind_dict
from mne.io.pick import _DATA_CH_TYPES_SPLIT
from mne.tests.common import assert_naming
from mne.utils import (catch_logging, _TempDir, requires_sklearn, slow_test,
                       run_tests_if_main)

# Set our plotters to test mode
import matplotlib
matplotlib.use('Agg')  # for testing don't use X server
import matplotlib.pyplot as plt  # noqa

warnings.simplefilter('always')  # enable b/c these tests throw warnings

data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(data_dir, 'test_raw.fif')
event_name = op.join(data_dir, 'test-eve.fif')
test_cov_name = op.join(data_dir, 'test-cov.fif')

event_id, tmin, tmax = 1, -0.2, 0.2
# if stop is too small pca may fail in some cases, but we're okay on this file
start, stop = 0, 6
score_funcs_unsuited = ['pointbiserialr', 'ansari']
try:
    from sklearn.utils.validation import NonBLASDotWarning
    warnings.simplefilter('error', NonBLASDotWarning)
except:
    pass


@requires_sklearn
def test_ica_full_data_recovery():
    """Test recovery of full data when no source is rejected."""
    # Most basic recovery
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(0.5, stop, copy=False).load_data()
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]
    with warnings.catch_warnings(record=True):  # bad proj
        epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                        baseline=(None, 0), preload=True, add_eeg_ref=False)
    evoked = epochs.average()
    n_channels = 5
    data = raw._data[:n_channels].copy()
    data_epochs = epochs.get_data()
    data_evoked = evoked.data
    for method in ['fastica']:
        stuff = [(2, n_channels, True), (2, n_channels // 2, False)]
        for n_components, n_pca_components, ok in stuff:
            ica = ICA(n_components=n_components,
                      max_pca_components=n_pca_components,
                      n_pca_components=n_pca_components,
                      method=method, max_iter=1)
            with warnings.catch_warnings(record=True):
                ica.fit(raw, picks=list(range(n_channels)))
            raw2 = ica.apply(raw.copy(), exclude=[])
            if ok:
                assert_allclose(data[:n_channels], raw2._data[:n_channels],
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data[:n_channels] - raw2._data[:n_channels])
                assert_true(np.max(diff) > 1e-14)

            ica = ICA(n_components=n_components,
                      max_pca_components=n_pca_components,
                      n_pca_components=n_pca_components)
            with warnings.catch_warnings(record=True):
                ica.fit(epochs, picks=list(range(n_channels)))
            epochs2 = ica.apply(epochs.copy(), exclude=[])
            data2 = epochs2.get_data()[:, :n_channels]
            if ok:
                assert_allclose(data_epochs[:, :n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(data_epochs[:, :n_channels] - data2)
                assert_true(np.max(diff) > 1e-14)

            evoked2 = ica.apply(evoked.copy(), exclude=[])
            data2 = evoked2.data[:n_channels]
            if ok:
                assert_allclose(data_evoked[:n_channels], data2,
                                rtol=1e-10, atol=1e-15)
            else:
                diff = np.abs(evoked.data[:n_channels] - data2)
                assert_true(np.max(diff) > 1e-14)
    assert_raises(ValueError, ICA, method='pizza-decomposision')


@requires_sklearn
def test_ica_rank_reduction():
    """Test recovery ICA rank reduction."""
    # Most basic recovery
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(0.5, stop, copy=False).load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]
    n_components = 5
    max_pca_components = len(picks)
    for n_pca_components in [6, 10]:
        with warnings.catch_warnings(record=True):  # non-convergence
            warnings.simplefilter('always')
            ica = ICA(n_components=n_components,
                      max_pca_components=max_pca_components,
                      n_pca_components=n_pca_components,
                      method='fastica', max_iter=1).fit(raw, picks=picks)

        rank_before = raw.estimate_rank(picks=picks)
        assert_equal(rank_before, len(picks))
        raw_clean = ica.apply(raw.copy())
        rank_after = raw_clean.estimate_rank(picks=picks)
        # interaction between ICA rejection and PCA components difficult
        # to preduct. Rank_after often seems to be 1 higher then
        # n_pca_components
        assert_true(n_components < n_pca_components <= rank_after <=
                    rank_before)


@requires_sklearn
def test_ica_reset():
    """Test ICA resetting."""
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(0.5, stop, copy=False).load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')[:10]

    run_time_attrs = (
        '_pre_whitener',
        'unmixing_matrix_',
        'mixing_matrix_',
        'n_components_',
        'n_samples_',
        'pca_components_',
        'pca_explained_variance_',
        'pca_mean_'
    )
    with warnings.catch_warnings(record=True):
        ica = ICA(
            n_components=3, max_pca_components=3, n_pca_components=3,
            method='fastica', max_iter=1).fit(raw, picks=picks)

    assert_true(all(hasattr(ica, attr) for attr in run_time_attrs))
    ica._reset()
    assert_true(not any(hasattr(ica, attr) for attr in run_time_attrs))


@requires_sklearn
def test_ica_core():
    """Test ICA on raw and epochs."""
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(1.5, stop, copy=False).load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    # XXX. The None cases helped revealing bugs but are time consuming.
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, add_eeg_ref=False)
    noise_cov = [None, test_cov]
    # removed None cases to speed up...
    n_components = [2, 1.0]  # for future dbg add cases
    max_pca_components = [3]
    picks_ = [picks]
    methods = ['fastica']
    iter_ica_params = product(noise_cov, n_components, max_pca_components,
                              picks_, methods)

    # # test init catchers
    assert_raises(ValueError, ICA, n_components=3, max_pca_components=2)
    assert_raises(ValueError, ICA, n_components=2.3, max_pca_components=2)

    # test essential core functionality
    for n_cov, n_comp, max_n, pcks, method in iter_ica_params:
        # Test ICA raw
        ica = ICA(noise_cov=n_cov, n_components=n_comp,
                  max_pca_components=max_n, n_pca_components=max_n,
                  random_state=0, method=method, max_iter=1)
        assert_raises(ValueError, ica.__contains__, 'mag')

        print(ica)  # to test repr

        # test fit checker
        assert_raises(RuntimeError, ica.get_sources, raw)
        assert_raises(RuntimeError, ica.get_sources, epochs)

        # test decomposition
        with warnings.catch_warnings(record=True):
            ica.fit(raw, picks=pcks, start=start, stop=stop)
            repr(ica)  # to test repr
        assert_true('mag' in ica)  # should now work without error

        # test re-fit
        unmixing1 = ica.unmixing_matrix_
        with warnings.catch_warnings(record=True):
            ica.fit(raw, picks=pcks, start=start, stop=stop)
        assert_array_almost_equal(unmixing1, ica.unmixing_matrix_)

        sources = ica.get_sources(raw)[:, :][0]
        assert_true(sources.shape[0] == ica.n_components_)

        # test preload filter
        raw3 = raw.copy()
        raw3.preload = False
        assert_raises(ValueError, ica.apply, raw3,
                      include=[1, 2])

        #######################################################################
        # test epochs decomposition
        ica = ICA(noise_cov=n_cov, n_components=n_comp,
                  max_pca_components=max_n, n_pca_components=max_n,
                  random_state=0)
        with warnings.catch_warnings(record=True):
            ica.fit(epochs, picks=picks)
        data = epochs.get_data()[:, 0, :]
        n_samples = np.prod(data.shape)
        assert_equal(ica.n_samples_, n_samples)
        print(ica)  # to test repr

        sources = ica.get_sources(epochs).get_data()
        assert_true(sources.shape[1] == ica.n_components_)

        assert_raises(ValueError, ica.score_sources, epochs,
                      target=np.arange(1))

        # test preload filter
        epochs3 = epochs.copy()
        epochs3.preload = False
        assert_raises(ValueError, ica.apply, epochs3,
                      include=[1, 2])

    # test for bug with whitener updating
    _pre_whitener = ica._pre_whitener.copy()
    epochs._data[:, 0, 10:15] *= 1e12
    ica.apply(epochs.copy())
    assert_array_equal(_pre_whitener, ica._pre_whitener)

    # test expl. var threshold leading to empty sel
    ica.n_components = 0.1
    assert_raises(RuntimeError, ica.fit, epochs)

    offender = 1, 2, 3,
    assert_raises(ValueError, ica.get_sources, offender)
    assert_raises(ValueError, ica.fit, offender)
    assert_raises(ValueError, ica.apply, offender)


@slow_test
@requires_sklearn
def test_ica_additional():
    """Test additional ICA functionality."""
    tempdir = _TempDir()
    stop2 = 500
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(1.5, stop, copy=False).load_data()
    # XXX This breaks the tests :(
    # raw.info['bads'] = [raw.ch_names[1]]
    test_cov = read_cov(test_cov_name)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True, add_eeg_ref=False)
    # test if n_components=None works
    with warnings.catch_warnings(record=True):
        ica = ICA(n_components=None,
                  max_pca_components=None,
                  n_pca_components=None, random_state=0)
        ica.fit(epochs, picks=picks, decim=3)
    # for testing eog functionality
    picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
                        eog=True, exclude='bads')
    epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
                        baseline=(None, 0), preload=True, add_eeg_ref=False)

    test_cov2 = test_cov.copy()
    ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_true(ica.info is None)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks[:5])
    assert_true(isinstance(ica.info, Info))
    assert_true(ica.n_components_ < 5)

    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    assert_raises(RuntimeError, ica.save, '')
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)

    # test corrmap
    ica2 = ica.copy()
    ica3 = ica.copy()
    corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
    assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"])
    assert_true(0 in ica.labels_["blinks"])
    template = _get_ica_map(ica)[0]
    corrmap([ica, ica3], template, threshold='auto', label='blinks', plot=True,
            ch_type="mag")
    assert_true(ica2.labels_["blinks"] == ica3.labels_["blinks"])
    plt.close('all')

    # test warnings on bad filenames
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
        ica.save(ica_badname)
        read_ica(ica_badname)
    assert_naming(w, 'test_ica.py', 2)

    # test decim
    ica = ICA(n_components=3, max_pca_components=4,
              n_pca_components=4)
    raw_ = raw.copy()
    for _ in range(3):
        raw_.append(raw_)
    n_samples = raw_._data.shape[1]
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(raw_._data.shape[1], n_samples)

    # test expl var
    ica = ICA(n_components=1.0, max_pca_components=4,
              n_pca_components=4)
    with warnings.catch_warnings(record=True):
        ica.fit(raw, picks=None, decim=3)
    assert_true(ica.n_components_ == 4)
    ica_var = _ica_explained_variance(ica, raw, normalize=True)
    assert_true(np.all(ica_var[:-1] >= ica_var[1:]))

    # test ica sorting
    ica.exclude = [0]
    ica.labels_ = dict(blink=[0], think=[1])
    ica_sorted = _sort_components(ica, [3, 2, 1, 0], copy=True)
    assert_equal(ica_sorted.exclude, [3])
    assert_equal(ica_sorted.labels_, dict(blink=[3], think=[2]))

    # epochs extraction from raw fit
    assert_raises(RuntimeError, ica.get_sources, epochs)
    # test reading and writing
    test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
    for cov in (None, test_cov):
        ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
                  n_pca_components=4)
        with warnings.catch_warnings(record=True):  # ICA does not converge
            ica.fit(raw, picks=picks, start=start, stop=stop2)
        sources = ica.get_sources(epochs).get_data()
        assert_true(ica.mixing_matrix_.shape == (2, 2))
        assert_true(ica.unmixing_matrix_.shape == (2, 2))
        assert_true(ica.pca_components_.shape == (4, len(picks)))
        assert_true(sources.shape[1] == ica.n_components_)

        for exclude in [[], [0]]:
            ica.exclude = exclude
            ica.labels_ = {'foo': [0]}
            ica.save(test_ica_fname)
            ica_read = read_ica(test_ica_fname)
            assert_true(ica.exclude == ica_read.exclude)
            assert_equal(ica.labels_, ica_read.labels_)
            ica.exclude = []
            ica.apply(raw, exclude=[1])
            assert_true(ica.exclude == [])

            ica.exclude = [0, 1]
            ica.apply(raw, exclude=[1])
            assert_true(ica.exclude == [0, 1])

            ica_raw = ica.get_sources(raw)
            assert_true(ica.exclude == [ica_raw.ch_names.index(e) for e in
                                        ica_raw.info['bads']])

        # test filtering
        d1 = ica_raw._data[0].copy()
        ica_raw.filter(4, 20, l_trans_bandwidth='auto',
                       h_trans_bandwidth='auto', filter_length='auto',
                       phase='zero', fir_window='hamming')
        assert_equal(ica_raw.info['lowpass'], 20.)
        assert_equal(ica_raw.info['highpass'], 4.)
        assert_true((d1 != ica_raw._data[0]).any())
        d1 = ica_raw._data[0].copy()
        ica_raw.notch_filter([10], filter_length='auto', trans_bandwidth=10,
                             phase='zero', fir_window='hamming')
        assert_true((d1 != ica_raw._data[0]).any())

        ica.n_pca_components = 2
        ica.method = 'fake'
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        assert_true(ica.n_pca_components == ica_read.n_pca_components)
        assert_equal(ica.method, ica_read.method)
        assert_equal(ica.labels_, ica_read.labels_)

        # check type consistency
        attrs = ('mixing_matrix_ unmixing_matrix_ pca_components_ '
                 'pca_explained_variance_ _pre_whitener')

        def f(x, y):
            return getattr(x, y).dtype

        for attr in attrs.split():
            assert_equal(f(ica_read, attr), f(ica, attr))

        ica.n_pca_components = 4
        ica_read.n_pca_components = 4

        ica.exclude = []
        ica.save(test_ica_fname)
        ica_read = read_ica(test_ica_fname)
        for attr in ['mixing_matrix_', 'unmixing_matrix_', 'pca_components_',
                     'pca_mean_', 'pca_explained_variance_',
                     '_pre_whitener']:
            assert_array_almost_equal(getattr(ica, attr),
                                      getattr(ica_read, attr))

        assert_true(ica.ch_names == ica_read.ch_names)
        assert_true(isinstance(ica_read.info, Info))

        sources = ica.get_sources(raw)[:, :][0]
        sources2 = ica_read.get_sources(raw)[:, :][0]
        assert_array_almost_equal(sources, sources2)

        _raw1 = ica.apply(raw, exclude=[1])
        _raw2 = ica_read.apply(raw, exclude=[1])
        assert_array_almost_equal(_raw1[:, :][0], _raw2[:, :][0])

    os.remove(test_ica_fname)
    # check scrore funcs
    for name, func in get_score_funcs().items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.score_sources(raw, target='EOG 061', score_func=func,
                                   start=0, stop=10)
        assert_true(ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.score_sources(raw, score_func=stats.skew)
    # check exception handling
    assert_raises(ValueError, ica.score_sources, raw,
                  target=np.arange(1))

    params = []
    params += [(None, -1, slice(2), [0, 1])]  # varicance, kurtosis idx params
    params += [(None, 'MEG 1531')]  # ECG / EOG channel params
    for idx, ch_name in product(*params):
        ica.detect_artifacts(raw, start_find=0, stop_find=50, ecg_ch=ch_name,
                             eog_ch=ch_name, skew_criterion=idx,
                             var_criterion=idx, kurt_criterion=idx)
    with warnings.catch_warnings(record=True):
        idx, scores = ica.find_bads_ecg(raw, method='ctps')
        assert_equal(len(scores), ica.n_components_)
        idx, scores = ica.find_bads_ecg(raw, method='correlation')
        assert_equal(len(scores), ica.n_components_)

        idx, scores = ica.find_bads_eog(raw)
        assert_equal(len(scores), ica.n_components_)

        ica.labels_ = None
        idx, scores = ica.find_bads_ecg(epochs, method='ctps')
        assert_equal(len(scores), ica.n_components_)
        assert_raises(ValueError, ica.find_bads_ecg, epochs.average(),
                      method='ctps')
        assert_raises(ValueError, ica.find_bads_ecg, raw,
                      method='crazy-coupling')

        raw.info['chs'][raw.ch_names.index('EOG 061') - 1]['kind'] = 202
        idx, scores = ica.find_bads_eog(raw)
        assert_true(isinstance(scores, list))
        assert_equal(len(scores[0]), ica.n_components_)

    # check score funcs
    for name, func in get_score_funcs().items():
        if name in score_funcs_unsuited:
            continue
        scores = ica.score_sources(epochs_eog, target='EOG 061',
                                   score_func=func)
        assert_true(ica.n_components_ == len(scores))

    # check univariate stats
    scores = ica.score_sources(epochs, score_func=stats.skew)

    # check exception handling
    assert_raises(ValueError, ica.score_sources, epochs,
                  target=np.arange(1))

    # ecg functionality
    ecg_scores = ica.score_sources(raw, target='MEG 1531',
                                   score_func='pearsonr')

    with warnings.catch_warnings(record=True):  # filter attenuation warning
        ecg_events = ica_find_ecg_events(raw,
                                         sources[np.abs(ecg_scores).argmax()])

    assert_true(ecg_events.ndim == 2)

    # eog functionality
    eog_scores = ica.score_sources(raw, target='EOG 061',
                                   score_func='pearsonr')
    with warnings.catch_warnings(record=True):  # filter attenuation warning
        eog_events = ica_find_eog_events(raw,
                                         sources[np.abs(eog_scores).argmax()])

    assert_true(eog_events.ndim == 2)

    # Test ica fiff export
    ica_raw = ica.get_sources(raw, start=0, stop=100)
    assert_true(ica_raw.last_samp - ica_raw.first_samp == 100)
    assert_true(len(ica_raw._filenames) == 0)  # API consistency
    ica_chans = [ch for ch in ica_raw.ch_names if 'ICA' in ch]
    assert_true(ica.n_components_ == len(ica_chans))
    test_ica_fname = op.join(op.abspath(op.curdir), 'test-ica_raw.fif')
    ica.n_components = np.int32(ica.n_components)
    ica_raw.save(test_ica_fname, overwrite=True)
    ica_raw2 = read_raw_fif(test_ica_fname, preload=True, add_eeg_ref=False)
    assert_allclose(ica_raw._data, ica_raw2._data, rtol=1e-5, atol=1e-4)
    ica_raw2.close()
    os.remove(test_ica_fname)

    # Test ica epochs export
    ica_epochs = ica.get_sources(epochs)
    assert_true(ica_epochs.events.shape == epochs.events.shape)
    ica_chans = [ch for ch in ica_epochs.ch_names if 'ICA' in ch]
    assert_true(ica.n_components_ == len(ica_chans))
    assert_true(ica.n_components_ == ica_epochs.get_data().shape[1])
    assert_true(ica_epochs._raw is None)
    assert_true(ica_epochs.preload is True)

    # test float n pca components
    ica.pca_explained_variance_ = np.array([0.2] * 5)
    ica.n_components_ = 0
    for ncomps, expected in [[0.3, 1], [0.9, 4], [1, 1]]:
        ncomps_ = ica._check_n_pca_components(ncomps)
        assert_true(ncomps_ == expected)


@requires_sklearn
def test_run_ica():
    """Test run_ica function."""
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(1.5, stop, copy=False).load_data()
    params = []
    params += [(None, -1, slice(2), [0, 1])]  # varicance, kurtosis idx
    params += [(None, 'MEG 1531')]  # ECG / EOG channel params
    for idx, ch_name in product(*params):
        warnings.simplefilter('always')
        with warnings.catch_warnings(record=True):
            run_ica(raw, n_components=2, start=0, stop=6, start_find=0,
                    stop_find=5, ecg_ch=ch_name, eog_ch=ch_name,
                    skew_criterion=idx, var_criterion=idx, kurt_criterion=idx)


@requires_sklearn
def test_ica_reject_buffer():
    """Test ICA data raw buffer rejection."""
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(1.5, stop, copy=False).load_data()
    picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
                       eog=False, exclude='bads')
    ica = ICA(n_components=3, max_pca_components=4, n_pca_components=4)
    raw._data[2, 1000:1005] = 5e-12
    with catch_logging() as drop_log:
        with warnings.catch_warnings(record=True):
            ica.fit(raw, picks[:5], reject=dict(mag=2.5e-12), decim=2,
                    tstep=0.01, verbose=True)
        assert_true(raw._data[:5, ::2].shape[1] - 4 == ica.n_samples_)
    log = [l for l in drop_log.getvalue().split('\n') if 'detected' in l]
    assert_equal(len(log), 1)


@requires_sklearn
def test_ica_twice():
    """Test running ICA twice."""
    raw = read_raw_fif(raw_fname, add_eeg_ref=False)
    raw.crop(1.5, stop, copy=False).load_data()
    picks = pick_types(raw.info, meg='grad', exclude='bads')
    n_components = 0.9
    max_pca_components = None
    n_pca_components = 1.1
    with warnings.catch_warnings(record=True):
        ica1 = ICA(n_components=n_components,
                   max_pca_components=max_pca_components,
                   n_pca_components=n_pca_components, random_state=0)

        ica1.fit(raw, picks=picks, decim=3)
        raw_new = ica1.apply(raw, n_pca_components=n_pca_components)
        ica2 = ICA(n_components=n_components,
                   max_pca_components=max_pca_components,
                   n_pca_components=1.0, random_state=0)
        ica2.fit(raw_new, picks=picks, decim=3)
        assert_equal(ica1.n_components_, ica2.n_components_)


@requires_sklearn
def test_fit_params():
    """Test fit_params for ICA."""
    assert_raises(ValueError, ICA, fit_params=dict(extended=True))
    fit_params = {}
    ICA(fit_params=fit_params)  # test no side effects
    assert_equal(fit_params, {})


@requires_sklearn
def test_bad_channels():
    """Test exception when unsupported channels are used."""
    chs = [i for i in _kind_dict]
    data_chs = _DATA_CH_TYPES_SPLIT + ['eog']
    chs_bad = list(set(chs) - set(data_chs))
    info = create_info(len(chs), 500, chs)
    data = np.random.rand(len(chs), 50)
    raw = RawArray(data, info)
    data = np.random.rand(100, len(chs), 50)
    epochs = EpochsArray(data, info)

    n_components = 0.9
    ica = ICA(n_components=n_components, method='fastica')

    for inst in [raw, epochs]:
        for ch in chs_bad:
            # Test case for only bad channels
            picks_bad1 = pick_types(inst.info, meg=False,
                                    **{str(ch): True})
            # Test case for good and bad channels
            picks_bad2 = pick_types(inst.info, meg=True,
                                    **{str(ch): True})
            assert_raises(ValueError, ica.fit, inst, picks=picks_bad1)
            assert_raises(ValueError, ica.fit, inst, picks=picks_bad2)
        assert_raises(ValueError, ica.fit, inst, picks=[])


@requires_sklearn
def test_eog_channel():
    """Test that EOG channel is included when performing ICA."""
    raw = read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=True, stim=True, ecg=False,
                       eog=True, exclude='bads')
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), preload=True,
                    add_eeg_ref=False)
    n_components = 0.9
    ica = ICA(n_components=n_components, method='fastica')
    # Test case for MEG and EOG data. Should have EOG channel
    for inst in [raw, epochs]:
        picks1a = pick_types(inst.info, meg=True, stim=False, ecg=False,
                             eog=False, exclude='bads')[:4]
        picks1b = pick_types(inst.info, meg=False, stim=False, ecg=False,
                             eog=True, exclude='bads')
        picks1 = np.append(picks1a, picks1b)
        ica.fit(inst, picks=picks1)
        assert_true(any('EOG' in ch for ch in ica.ch_names))
    # Test case for MEG data. Should have no EOG channel
    for inst in [raw, epochs]:
        picks1 = pick_types(inst.info, meg=True, stim=False, ecg=False,
                            eog=False, exclude='bads')[:5]
        ica.fit(inst, picks=picks1)
        assert_false(any('EOG' in ch for ch in ica.ch_names))

run_tests_if_main()