File: test_xdawn.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (224 lines) | stat: -rw-r--r-- 7,958 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Authors: Alexandre Barachant <alexandre.barachant@gmail.com>
#          Jean-Remi King <jeanremi.king@gmail.com>
#
# License: BSD (3-clause)

import numpy as np
import os.path as op
from nose.tools import assert_equal, assert_raises, assert_true
from numpy.testing import assert_array_equal, assert_array_almost_equal
from mne import Epochs, read_events, pick_types, compute_raw_covariance
from mne.io import read_raw_fif
from mne.utils import requires_sklearn, run_tests_if_main
from mne.preprocessing.xdawn import Xdawn, _XdawnTransformer

base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_name = op.join(base_dir, 'test-eve.fif')

tmin, tmax = -0.1, 0.2
event_id = dict(cond2=2, cond3=3)


def _get_data():
    """Get data."""
    raw = read_raw_fif(raw_fname, add_eeg_ref=False, verbose=False,
                       preload=True)
    events = read_events(event_name)
    picks = pick_types(raw.info, meg=False, eeg=True, stim=False,
                       ecg=False, eog=False,
                       exclude='bads')[::8]
    return raw, events, picks


def test_xdawn():
    """Test init of xdawn."""
    # Init xdawn with good parameters
    Xdawn(n_components=2, correct_overlap='auto', signal_cov=None, reg=None)
    # Init xdawn with bad parameters
    assert_raises(ValueError, Xdawn, correct_overlap=42)


def test_xdawn_fit():
    """Test Xdawn fit."""
    # Get data
    raw, events, picks = _get_data()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False,
                    add_eeg_ref=False)
    # =========== Basic Fit test =================
    # Test base xdawn
    xd = Xdawn(n_components=2, correct_overlap='auto')
    xd.fit(epochs)
    # With these parameters, the overlap correction must be False
    assert_equal(xd.correct_overlap_, False)
    # No overlap correction should give averaged evoked
    evoked = epochs['cond2'].average()
    assert_array_equal(evoked.data, xd.evokeds_['cond2'].data)

    # ========== with signal cov provided ====================
    # Provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    xd.fit(epochs)
    # Provide ndarray
    signal_cov = np.eye(len(picks))
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    xd.fit(epochs)
    # Provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    assert_raises(ValueError, xd.fit, epochs)
    # Provide another type
    signal_cov = 42
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=signal_cov)
    assert_raises(ValueError, xd.fit, epochs)
    # Fit with baseline correction and overlap correction should throw an
    # error
    # XXX This is a buggy test, the epochs here don't overlap
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=(None, 0), verbose=False,
                    add_eeg_ref=False)

    xd = Xdawn(n_components=2, correct_overlap=True)
    assert_raises(ValueError, xd.fit, epochs)


def test_xdawn_apply_transform():
    """Test Xdawn apply and transform."""
    # Get data
    raw, events, picks = _get_data()
    raw.pick_types(eeg=True, meg=False)
    epochs = Epochs(raw, events, event_id, tmin, tmax, proj=False,
                    add_eeg_ref=False, preload=True, baseline=None,
                    verbose=False)
    n_components = 2
    # Fit Xdawn
    xd = Xdawn(n_components=n_components, correct_overlap=False)
    xd.fit(epochs)

    # Apply on different types of instances
    for inst in [raw, epochs.average(), epochs]:
        denoise = xd.apply(inst)
    # Apply on other thing should raise an error
    assert_raises(ValueError, xd.apply, 42)

    # Transform on epochs
    xd.transform(epochs)
    # Transform on ndarray
    xd.transform(epochs._data)
    # Transform on someting else
    assert_raises(ValueError, xd.transform, 42)

    # Check numerical results with shuffled epochs
    np.random.seed(0)  # random makes unstable linalg
    idx = np.arange(len(epochs))
    np.random.shuffle(idx)
    xd.fit(epochs[idx])
    denoise_shfl = xd.apply(epochs)
    assert_array_almost_equal(denoise['cond2']._data,
                              denoise_shfl['cond2']._data)


@requires_sklearn
def test_xdawn_regularization():
    """Test Xdawn with regularization."""
    # Get data
    raw, events, picks = _get_data()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False,
                    add_eeg_ref=False)

    # Test with overlapping events.
    # modify events to simulate one overlap
    events = epochs.events
    sel = np.where(events[:, 2] == 2)[0][:2]
    modified_event = events[sel[0]]
    modified_event[0] += 1
    epochs.events[sel[1]] = modified_event
    # Fit and check that overlap was found and applied
    xd = Xdawn(n_components=2, correct_overlap='auto', reg='oas')
    xd.fit(epochs)
    assert_equal(xd.correct_overlap_, True)
    evoked = epochs['cond2'].average()
    assert_true(np.sum(np.abs(evoked.data - xd.evokeds_['cond2'].data)))

    # With covariance regularization
    for reg in [.1, 0.1, 'ledoit_wolf', 'oas']:
        xd = Xdawn(n_components=2, correct_overlap=False,
                   signal_cov=np.eye(len(picks)), reg=reg)
        xd.fit(epochs)
    # With bad shrinkage
    xd = Xdawn(n_components=2, correct_overlap=False,
               signal_cov=np.eye(len(picks)), reg=2)
    assert_raises(ValueError, xd.fit, epochs)


@requires_sklearn
def test_XdawnTransformer():
    """Test _XdawnTransformer."""
    # Get data
    raw, events, picks = _get_data()
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    preload=True, baseline=None, verbose=False,
                    add_eeg_ref=False)
    X = epochs._data
    y = epochs.events[:, -1]
    # Fit
    xdt = _XdawnTransformer()
    xdt.fit(X, y)
    assert_raises(ValueError, xdt.fit, X, y[1:])
    assert_raises(ValueError, xdt.fit, 'foo')

    # Provide covariance object
    signal_cov = compute_raw_covariance(raw, picks=picks)
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    xdt.fit(X, y)
    # Provide ndarray
    signal_cov = np.eye(len(picks))
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    xdt.fit(X, y)
    # Provide ndarray of bad shape
    signal_cov = np.eye(len(picks) - 1)
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    assert_raises(ValueError, xdt.fit, X, y)
    # Provide another type
    signal_cov = 42
    xdt = _XdawnTransformer(signal_cov=signal_cov)
    assert_raises(ValueError, xdt.fit, X, y)

    # Fit with y as None
    xdt = _XdawnTransformer()
    xdt.fit(X)

    # Compare xdawn and _XdawnTransformer
    xd = Xdawn(correct_overlap=False)
    xd.fit(epochs)

    xdt = _XdawnTransformer()
    xdt.fit(X, y)
    assert_array_almost_equal(xd.filters_['cond2'][:, :2],
                              xdt.filters_.reshape(2, 2, 8)[0].T)

    # Transform testing
    xdt.transform(X[1:, ...])  # different number of epochs
    xdt.transform(X[:, :, 1:])  # different number of time
    assert_raises(ValueError, xdt.transform, X[:, 1:, :])
    Xt = xdt.transform(X)
    assert_raises(ValueError, xdt.transform, 42)

    # Inverse transform testing
    Xinv = xdt.inverse_transform(Xt)
    assert_equal(Xinv.shape, X.shape)
    xdt.inverse_transform(Xt[1:, ...])
    xdt.inverse_transform(Xt[:, :, 1:])
    # should raise an error if not correct number of components
    assert_raises(ValueError, xdt.inverse_transform, Xt[:, 1:, :])
    assert_raises(ValueError, xdt.inverse_transform, 42)


run_tests_if_main()