1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
# -*- coding: utf-8 -*-
# Authors: Mark Wronkiewicz <wronk@uw.edu>
# Yousra Bekhti <yousra.bekhti@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
import numpy as np
from .evoked import _generate_noise
from ..event import _get_stim_channel
from ..io.pick import pick_types, pick_info, pick_channels
from ..source_estimate import VolSourceEstimate
from ..cov import make_ad_hoc_cov, read_cov
from ..bem import fit_sphere_to_headshape, make_sphere_model, read_bem_solution
from ..io import RawArray, _BaseRaw
from ..chpi import read_head_pos, head_pos_to_trans_rot_t, _get_hpi_info
from ..io.constants import FIFF
from ..forward import (_magnetic_dipole_field_vec, _merge_meg_eeg_fwds,
_stc_src_sel, convert_forward_solution,
_prepare_for_forward, _transform_orig_meg_coils,
_compute_forwards, _to_forward_dict)
from ..transforms import _get_trans, transform_surface_to
from ..source_space import _ensure_src, _points_outside_surface
from ..source_estimate import _BaseSourceEstimate
from ..utils import logger, verbose, check_random_state, warn
from ..parallel import check_n_jobs
from ..externals.six import string_types
def _log_ch(start, info, ch):
"""Helper to log channel information"""
if ch is not None:
extra, just, ch = ' stored on channel:', 50, info['ch_names'][ch]
else:
extra, just, ch = ' not stored', 0, ''
logger.info((start + extra).ljust(just) + ch)
@verbose
def simulate_raw(raw, stc, trans, src, bem, cov='simple',
blink=False, ecg=False, chpi=False, head_pos=None,
mindist=1.0, interp='cos2', iir_filter=None, n_jobs=1,
random_state=None, verbose=None):
"""Simulate raw data
Head movements can optionally be simulated using the ``head_pos``
parameter.
Parameters
----------
raw : instance of Raw
The raw template to use for simulation. The ``info``, ``times``,
and potentially ``first_samp`` properties will be used.
stc : instance of SourceEstimate
The source estimate to use to simulate data. Must have the same
sample rate as the raw data.
trans : dict | str | None
Either a transformation filename (usually made using mne_analyze)
or an info dict (usually opened using read_trans()).
If string, an ending of `.fif` or `.fif.gz` will be assumed to
be in FIF format, any other ending will be assumed to be a text
file with a 4x4 transformation matrix (like the `--trans` MNE-C
option). If trans is None, an identity transform will be used.
src : str | instance of SourceSpaces
Source space corresponding to the stc. If string, should be a source
space filename. Can also be an instance of loaded or generated
SourceSpaces.
bem : str | dict
BEM solution corresponding to the stc. If string, should be a BEM
solution filename (e.g., "sample-5120-5120-5120-bem-sol.fif").
cov : instance of Covariance | str | None
The sensor covariance matrix used to generate noise. If None,
no noise will be added. If 'simple', a basic (diagonal) ad-hoc
noise covariance will be used. If a string, then the covariance
will be loaded.
blink : bool
If true, add simulated blink artifacts. See Notes for details.
ecg : bool
If true, add simulated ECG artifacts. See Notes for details.
chpi : bool
If true, simulate continuous head position indicator information.
Valid cHPI information must encoded in ``raw.info['hpi_meas']``
to use this option.
head_pos : None | str | dict | tuple | array
Name of the position estimates file. Should be in the format of
the files produced by maxfilter. If dict, keys should
be the time points and entries should be 4x4 ``dev_head_t``
matrices. If None, the original head position (from
``info['dev_head_t']``) will be used. If tuple, should have the
same format as data returned by `head_pos_to_trans_rot_t`.
If array, should be of the form returned by `read_head_pos`.
mindist : float
Minimum distance between sources and the inner skull boundary
to use during forward calculation.
interp : str
Either 'cos2', 'linear', or 'zero', the type of forward-solution
interpolation to use between forward solutions at different
head positions.
iir_filter : None | array
IIR filter coefficients (denominator) e.g. [1, -1, 0.2].
n_jobs : int
Number of jobs to use.
random_state : None | int | np.random.RandomState
The random generator state used for blink, ECG, and sensor
noise randomization.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
raw : instance of Raw
The simulated raw file.
See Also
--------
read_head_pos
simulate_evoked
simulate_stc
simalute_sparse_stc
Notes
-----
Events coded with the position number (starting at 1) will be stored
in the trigger channel (if available) at times corresponding to t=0
in the ``stc``.
The resulting SNR will be determined by the structure of the noise
covariance, the amplitudes of ``stc``, and the head position(s) provided.
The blink and ECG artifacts are generated by 1) placing impulses at
random times of activation, and 2) convolving with activation kernel
functions. In both cases, the scale-factors of the activation functions
(and for the resulting EOG and ECG channel traces) were chosen based on
visual inspection to yield amplitudes generally consistent with those
seen in experimental data. Noisy versions of the blink and ECG
activations will be stored in the first EOG and ECG channel in the
raw file, respectively, if they exist.
For blink artifacts:
1. Random activation times are drawn from an inhomogeneous poisson
process whose blink rate oscillates between 4.5 blinks/minute
and 17 blinks/minute based on the low (reading) and high (resting)
blink rates from [1]_.
2. The activation kernel is a 250 ms Hanning window.
3. Two activated dipoles are located in the z=0 plane (in head
coordinates) at ±30 degrees away from the y axis (nasion).
4. Activations affect MEG and EEG channels.
For ECG artifacts:
1. Random inter-beat intervals are drawn from a uniform distribution
of times corresponding to 40 and 80 beats per minute.
2. The activation function is the sum of three Hanning windows with
varying durations and scales to make a more complex waveform.
3. The activated dipole is located one (estimated) head radius to
the left (-x) of head center and three head radii below (+z)
head center; this dipole is oriented in the +x direction.
4. Activations only affect MEG channels.
.. versionadded:: 0.10.0
References
----------
.. [1] Bentivoglio et al. "Analysis of blink rate patterns in normal
subjects" Movement Disorders, 1997 Nov;12(6):1028-34.
"""
if not isinstance(raw, _BaseRaw):
raise TypeError('raw should be an instance of Raw')
times, info, first_samp = raw.times, raw.info, raw.first_samp
raw_verbose = raw.verbose
# Check for common flag errors and try to override
if not isinstance(stc, _BaseSourceEstimate):
raise TypeError('stc must be a SourceEstimate')
if not np.allclose(info['sfreq'], 1. / stc.tstep):
raise ValueError('stc and info must have same sample rate')
if len(stc.times) <= 2: # to ensure event encoding works
raise ValueError('stc must have at least three time points')
stim = False if len(pick_types(info, meg=False, stim=True)) == 0 else True
n_jobs = check_n_jobs(n_jobs)
rng = check_random_state(random_state)
if interp not in ('cos2', 'linear', 'zero'):
raise ValueError('interp must be "cos2", "linear", or "zero"')
if head_pos is None: # use pos from file
dev_head_ts = [info['dev_head_t']] * 2
offsets = np.array([0, len(times)])
interp = 'zero'
# Use position data to simulate head movement
else:
if isinstance(head_pos, string_types):
head_pos = read_head_pos(head_pos)
if isinstance(head_pos, np.ndarray):
head_pos = head_pos_to_trans_rot_t(head_pos)
if isinstance(head_pos, tuple): # can be an already-loaded pos file
transs, rots, ts = head_pos
ts -= first_samp / info['sfreq'] # MF files need reref
dev_head_ts = [np.r_[np.c_[r, t[:, np.newaxis]], [[0, 0, 0, 1]]]
for r, t in zip(rots, transs)]
del transs, rots
elif isinstance(head_pos, dict):
ts = np.array(list(head_pos.keys()), float)
ts.sort()
dev_head_ts = [head_pos[float(tt)] for tt in ts]
else:
raise TypeError('unknown head_pos type %s' % type(head_pos))
bad = ts < 0
if bad.any():
raise RuntimeError('All position times must be >= 0, found %s/%s'
'< 0' % (bad.sum(), len(bad)))
bad = ts > times[-1]
if bad.any():
raise RuntimeError('All position times must be <= t_end (%0.1f '
'sec), found %s/%s bad values (is this a split '
'file?)' % (times[-1], bad.sum(), len(bad)))
if ts[0] > 0:
ts = np.r_[[0.], ts]
dev_head_ts.insert(0, info['dev_head_t']['trans'])
dev_head_ts = [{'trans': d, 'to': info['dev_head_t']['to'],
'from': info['dev_head_t']['from']}
for d in dev_head_ts]
if ts[-1] < times[-1]:
dev_head_ts.append(dev_head_ts[-1])
ts = np.r_[ts, [times[-1]]]
offsets = raw.time_as_index(ts)
offsets[-1] = len(times) # fix for roundoff error
assert offsets[-2] != offsets[-1]
del ts
src = _ensure_src(src, verbose=False)
if isinstance(bem, string_types):
bem = read_bem_solution(bem, verbose=False)
if isinstance(cov, string_types):
if cov == 'simple':
cov = make_ad_hoc_cov(info, verbose=False)
else:
cov = read_cov(cov, verbose=False)
assert np.array_equal(offsets, np.unique(offsets))
assert len(offsets) == len(dev_head_ts)
approx_events = int((len(times) / info['sfreq']) /
(stc.times[-1] - stc.times[0]))
logger.info('Provided parameters will provide approximately %s event%s'
% (approx_events, '' if approx_events == 1 else 's'))
# Extract necessary info
meeg_picks = pick_types(info, meg=True, eeg=True, exclude=[]) # for sim
meg_picks = pick_types(info, meg=True, eeg=False, exclude=[]) # for CHPI
fwd_info = pick_info(info, meeg_picks)
fwd_info['projs'] = [] # Ensure no 'projs' applied
logger.info('Setting up raw simulation: %s position%s, "%s" interpolation'
% (len(dev_head_ts), 's' if len(dev_head_ts) != 1 else '',
interp))
verts = stc.vertices
verts = [verts] if isinstance(stc, VolSourceEstimate) else verts
src = _restrict_source_space_to(src, verts)
# array used to store result
raw_data = np.zeros((len(info['ch_names']), len(times)))
# figure out our cHPI, ECG, and blink dipoles
ecg_rr = blink_rrs = exg_bem = hpi_rrs = None
ecg = ecg and len(meg_picks) > 0
chpi = chpi and len(meg_picks) > 0
if chpi:
hpi_freqs, hpi_rrs, hpi_pick, hpi_ons = _get_hpi_info(info)[:4]
hpi_nns = hpi_rrs / np.sqrt(np.sum(hpi_rrs * hpi_rrs,
axis=1))[:, np.newaxis]
# turn on cHPI in file
raw_data[hpi_pick, :] = hpi_ons.sum()
_log_ch('cHPI status bits enbled and', info, hpi_pick)
if blink or ecg:
R, r0 = fit_sphere_to_headshape(info, units='m', verbose=False)[:2]
exg_bem = make_sphere_model(r0, head_radius=R,
relative_radii=(0.97, 0.98, 0.99, 1.),
sigmas=(0.33, 1.0, 0.004, 0.33),
verbose=False)
if blink:
# place dipoles at 45 degree angles in z=0 plane
blink_rrs = np.array([[np.cos(np.pi / 3.), np.sin(np.pi / 3.), 0.],
[-np.cos(np.pi / 3.), np.sin(np.pi / 3), 0.]])
blink_rrs /= np.sqrt(np.sum(blink_rrs *
blink_rrs, axis=1))[:, np.newaxis]
blink_rrs *= 0.96 * R
blink_rrs += r0
# oriented upward
blink_nns = np.array([[0., 0., 1.], [0., 0., 1.]])
# Blink times drawn from an inhomogeneous poisson process
# by 1) creating the rate and 2) pulling random numbers
blink_rate = (1 + np.cos(2 * np.pi * 1. / 60. * times)) / 2.
blink_rate *= 12.5 / 60.
blink_rate += 4.5 / 60.
blink_data = rng.rand(len(times)) < blink_rate / info['sfreq']
blink_data = blink_data * (rng.rand(len(times)) + 0.5) # varying amps
# Activation kernel is a simple hanning window
blink_kernel = np.hanning(int(0.25 * info['sfreq']))
blink_data = np.convolve(blink_data, blink_kernel,
'same')[np.newaxis, :] * 1e-7
# Add rescaled noisy data to EOG ch
ch = pick_types(info, meg=False, eeg=False, eog=True)
noise = rng.randn(blink_data.shape[1]) * 5e-6
if len(ch) >= 1:
ch = ch[-1]
raw_data[ch, :] = blink_data * 1e3 + noise
else:
ch = None
_log_ch('Blinks simulated and trace', info, ch)
del blink_kernel, blink_rate, noise
if ecg:
ecg_rr = np.array([[-R, 0, -3 * R]])
max_beats = int(np.ceil(times[-1] * 80. / 60.))
# activation times with intervals drawn from a uniform distribution
# based on activation rates between 40 and 80 beats per minute
cardiac_idx = np.cumsum(rng.uniform(60. / 80., 60. / 40., max_beats) *
info['sfreq']).astype(int)
cardiac_idx = cardiac_idx[cardiac_idx < len(times)]
cardiac_data = np.zeros(len(times))
cardiac_data[cardiac_idx] = 1
# kernel is the sum of three hanning windows
cardiac_kernel = np.concatenate([
2 * np.hanning(int(0.04 * info['sfreq'])),
-0.3 * np.hanning(int(0.05 * info['sfreq'])),
0.2 * np.hanning(int(0.26 * info['sfreq']))], axis=-1)
ecg_data = np.convolve(cardiac_data, cardiac_kernel,
'same')[np.newaxis, :] * 15e-8
# Add rescaled noisy data to ECG ch
ch = pick_types(info, meg=False, eeg=False, ecg=True)
noise = rng.randn(ecg_data.shape[1]) * 1.5e-5
if len(ch) >= 1:
ch = ch[-1]
raw_data[ch, :] = ecg_data * 2e3 + noise
else:
ch = None
_log_ch('ECG simulated and trace', info, ch)
del cardiac_data, cardiac_kernel, max_beats, cardiac_idx
stc_event_idx = np.argmin(np.abs(stc.times))
if stim:
event_ch = pick_channels(info['ch_names'],
_get_stim_channel(None, info))[0]
raw_data[event_ch, :] = 0.
else:
event_ch = None
_log_ch('Event information', info, event_ch)
used = np.zeros(len(times), bool)
stc_indices = np.arange(len(times)) % len(stc.times)
raw_data[meeg_picks, :] = 0.
hpi_mag = 70e-9
last_fwd = last_fwd_chpi = last_fwd_blink = last_fwd_ecg = src_sel = None
zf = None # final filter conditions for the noise
# don't process these any more if no MEG present
for fi, (fwd, fwd_blink, fwd_ecg, fwd_chpi) in \
enumerate(_iter_forward_solutions(
fwd_info, trans, src, bem, exg_bem, dev_head_ts, mindist,
hpi_rrs, blink_rrs, ecg_rr, n_jobs)):
# must be fixed orientation
# XXX eventually we could speed this up by allowing the forward
# solution code to only compute the normal direction
fwd = convert_forward_solution(fwd, surf_ori=True,
force_fixed=True, verbose=False)
if blink:
fwd_blink = fwd_blink['sol']['data']
for ii in range(len(blink_rrs)):
fwd_blink[:, ii] = np.dot(fwd_blink[:, 3 * ii:3 * (ii + 1)],
blink_nns[ii])
fwd_blink = fwd_blink[:, :len(blink_rrs)]
fwd_blink = fwd_blink.sum(axis=1)[:, np.newaxis]
# just use one arbitrary direction
if ecg:
fwd_ecg = fwd_ecg['sol']['data'][:, [0]]
# align cHPI magnetic dipoles in approx. radial direction
if chpi:
for ii in range(len(hpi_rrs)):
fwd_chpi[:, ii] = np.dot(fwd_chpi[:, 3 * ii:3 * (ii + 1)],
hpi_nns[ii])
fwd_chpi = fwd_chpi[:, :len(hpi_rrs)].copy()
if src_sel is None:
src_sel = _stc_src_sel(fwd['src'], stc)
verts = stc.vertices
verts = [verts] if isinstance(stc, VolSourceEstimate) else verts
diff_ = sum([len(v) for v in verts]) - len(src_sel)
if diff_ != 0:
warn('%s STC vertices omitted due to fwd calculation' % diff_)
if last_fwd is None:
last_fwd, last_fwd_blink, last_fwd_ecg, last_fwd_chpi = \
fwd, fwd_blink, fwd_ecg, fwd_chpi
continue
# set up interpolation
n_pts = offsets[fi] - offsets[fi - 1]
if interp == 'zero':
interps = None
else:
if interp == 'linear':
interps = np.linspace(1, 0, n_pts, endpoint=False)
else: # interp == 'cos2':
interps = np.cos(0.5 * np.pi * np.arange(n_pts)) ** 2
interps = np.array([interps, 1 - interps])
assert not used[offsets[fi - 1]:offsets[fi]].any()
event_idxs = np.where(stc_indices[offsets[fi - 1]:offsets[fi]] ==
stc_event_idx)[0] + offsets[fi - 1]
if stim:
raw_data[event_ch, event_idxs] = fi
logger.info(' Simulating data for %0.3f-%0.3f sec with %s event%s'
% (tuple(offsets[fi - 1:fi + 1] / info['sfreq']) +
(len(event_idxs), '' if len(event_idxs) == 1 else 's')))
# Process data in large chunks to save on memory
chunk_size = 10000
chunks = np.concatenate((np.arange(offsets[fi - 1], offsets[fi],
chunk_size), [offsets[fi]]))
for start, stop in zip(chunks[:-1], chunks[1:]):
assert stop - start <= chunk_size
used[start:stop] = True
if interp == 'zero':
this_interp = None
else:
this_interp = interps[:, start - chunks[0]:stop - chunks[0]]
time_sl = slice(start, stop)
this_t = np.arange(start, stop) / info['sfreq']
stc_idxs = stc_indices[time_sl]
# simulate brain data
raw_data[meeg_picks, time_sl] = \
_interp(last_fwd['sol']['data'], fwd['sol']['data'],
stc.data[:, stc_idxs][src_sel], this_interp)
# add sensor noise, ECG, blink, cHPI
if cov is not None:
noise, zf = _generate_noise(fwd_info, cov, iir_filter, rng,
len(stc_idxs), zi=zf)
raw_data[meeg_picks, time_sl] += noise
if blink:
raw_data[meeg_picks, time_sl] += \
_interp(last_fwd_blink, fwd_blink, blink_data[:, time_sl],
this_interp)
if ecg:
raw_data[meg_picks, time_sl] += \
_interp(last_fwd_ecg, fwd_ecg, ecg_data[:, time_sl],
this_interp)
if chpi:
sinusoids = np.zeros((len(hpi_freqs), len(stc_idxs)))
for fidx, freq in enumerate(hpi_freqs):
sinusoids[fidx] = 2 * np.pi * freq * this_t
sinusoids[fidx] = hpi_mag * np.sin(sinusoids[fidx])
raw_data[meg_picks, time_sl] += \
_interp(last_fwd_chpi, fwd_chpi, sinusoids, this_interp)
assert used[offsets[fi - 1]:offsets[fi]].all()
# prepare for next iteration
last_fwd, last_fwd_blink, last_fwd_ecg, last_fwd_chpi = \
fwd, fwd_blink, fwd_ecg, fwd_chpi
assert used.all()
raw = RawArray(raw_data, info, first_samp=first_samp, verbose=False)
raw.verbose = raw_verbose
logger.info('Done')
return raw
def _iter_forward_solutions(info, trans, src, bem, exg_bem, dev_head_ts,
mindist, hpi_rrs, blink_rrs, ecg_rrs, n_jobs):
"""Calculate a forward solution for a subject"""
mri_head_t, trans = _get_trans(trans)
logger.info('Setting up forward solutions')
megcoils, meg_info, compcoils, megnames, eegels, eegnames, rr, info, \
update_kwargs, bem = _prepare_for_forward(
src, mri_head_t, info, bem, mindist, n_jobs, verbose=False)
del (src, mindist)
eegfwd = _compute_forwards(rr, bem, [eegels], [None],
[None], ['eeg'], n_jobs, verbose=False)[0]
eegfwd = _to_forward_dict(eegfwd, eegnames)
if blink_rrs is not None:
eegblink = _compute_forwards(blink_rrs, exg_bem, [eegels], [None],
[None], ['eeg'], n_jobs,
verbose=False)[0]
eegblink = _to_forward_dict(eegblink, eegnames)
# short circuit here if there are no MEG channels (don't need to iterate)
if len(pick_types(info, meg=True)) == 0:
eegfwd.update(**update_kwargs)
for _ in dev_head_ts:
yield eegfwd, eegblink, None, None
return
coord_frame = FIFF.FIFFV_COORD_HEAD
if not bem['is_sphere']:
idx = np.where(np.array([s['id'] for s in bem['surfs']]) ==
FIFF.FIFFV_BEM_SURF_ID_BRAIN)[0]
assert len(idx) == 1
bem_surf = transform_surface_to(bem['surfs'][idx[0]], coord_frame,
mri_head_t)
for ti, dev_head_t in enumerate(dev_head_ts):
# Could be *slightly* more efficient not to do this N times,
# but the cost here is tiny compared to actual fwd calculation
logger.info('Computing gain matrix for transform #%s/%s'
% (ti + 1, len(dev_head_ts)))
_transform_orig_meg_coils(megcoils, dev_head_t)
_transform_orig_meg_coils(compcoils, dev_head_t)
# Make sure our sensors are all outside our BEM
coil_rr = [coil['r0'] for coil in megcoils]
if not bem['is_sphere']:
outside = _points_outside_surface(coil_rr, bem_surf, n_jobs,
verbose=False)
else:
d = coil_rr - bem['r0']
outside = np.sqrt(np.sum(d * d, axis=1)) > bem.radius
if not outside.all():
raise RuntimeError('%s MEG sensors collided with inner skull '
'surface for transform %s'
% (np.sum(~outside), ti))
# Compute forward
megfwd = _compute_forwards(rr, bem, [megcoils], [compcoils],
[meg_info], ['meg'], n_jobs,
verbose=False)[0]
megfwd = _to_forward_dict(megfwd, megnames)
fwd = _merge_meg_eeg_fwds(megfwd, eegfwd, verbose=False)
fwd.update(**update_kwargs)
fwd_blink = fwd_ecg = fwd_chpi = None
if blink_rrs is not None:
megblink = _compute_forwards(blink_rrs, exg_bem, [megcoils],
[compcoils], [meg_info], ['meg'],
n_jobs, verbose=False)[0]
megblink = _to_forward_dict(megblink, megnames)
fwd_blink = _merge_meg_eeg_fwds(megblink, eegblink, verbose=False)
if ecg_rrs is not None:
megecg = _compute_forwards(ecg_rrs, exg_bem, [megcoils],
[compcoils], [meg_info], ['meg'],
n_jobs, verbose=False)[0]
fwd_ecg = _to_forward_dict(megecg, megnames)
if hpi_rrs is not None:
fwd_chpi = _magnetic_dipole_field_vec(hpi_rrs, megcoils).T
yield fwd, fwd_blink, fwd_ecg, fwd_chpi
def _restrict_source_space_to(src, vertices):
"""Helper to trim down a source space"""
assert len(src) == len(vertices)
src = deepcopy(src)
for s, v in zip(src, vertices):
s['inuse'].fill(0)
s['nuse'] = len(v)
s['vertno'] = v
s['inuse'][s['vertno']] = 1
del s['pinfo']
del s['nuse_tri']
del s['use_tris']
del s['patch_inds']
return src
def _interp(data_1, data_2, stc_data, interps):
"""Helper to interpolate"""
out_data = np.dot(data_1, stc_data)
if interps is not None:
out_data *= interps[0]
data_1 = np.dot(data_1, stc_data)
data_1 *= interps[1]
out_data += data_1
del data_1
return out_data
|