1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_almost_equal)
from nose.tools import assert_true, assert_raises
import warnings
from mne.datasets import testing
from mne import read_forward_solution
from mne.simulation import simulate_sparse_stc, simulate_evoked
from mne import read_cov
from mne.io import read_raw_fif
from mne import pick_types_forward, read_evokeds
from mne.utils import run_tests_if_main
warnings.simplefilter('always')
data_path = testing.data_path(download=False)
fwd_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test_raw.fif')
ave_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test-ave.fif')
cov_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test-cov.fif')
@testing.requires_testing_data
def test_simulate_evoked():
"""Test simulation of evoked data."""
raw = read_raw_fif(raw_fname, add_eeg_ref=False)
fwd = read_forward_solution(fwd_fname, force_fixed=True)
fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])
cov = read_cov(cov_fname)
evoked_template = read_evokeds(ave_fname, condition=0, baseline=None)
evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads'])
snr = 6 # dB
tmin = -0.1
sfreq = 1000. # Hz
tstep = 1. / sfreq
n_samples = 600
times = np.linspace(tmin, tmin + n_samples * tstep, n_samples)
# Generate times series for 2 dipoles
stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times)
stc._data *= 1e-9
# Generate noisy evoked data
iir_filter = [1, -0.9]
evoked = simulate_evoked(fwd, stc, evoked_template.info, cov, snr,
tmin=0.0, tmax=0.2, iir_filter=iir_filter)
assert_array_almost_equal(evoked.times, stc.times)
assert_true(len(evoked.data) == len(fwd['sol']['data']))
# make a vertex that doesn't exist in fwd, should throw error
stc_bad = stc.copy()
mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']])
stc_bad.vertices[0][0] = mv + 1
assert_raises(RuntimeError, simulate_evoked, fwd, stc_bad,
evoked_template.info, cov, snr, tmin=0.0, tmax=0.2)
evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov, np.inf,
tmin=0.0, tmax=0.2)
evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov, np.inf,
tmin=0.0, tmax=0.2)
assert_array_equal(evoked_1.data, evoked_2.data)
# test snr definition in dB
evoked_noise = simulate_evoked(fwd, stc, evoked_template.info, cov,
snr=snr, tmin=None, tmax=None,
iir_filter=None)
evoked_clean = simulate_evoked(fwd, stc, evoked_template.info, cov,
snr=np.inf, tmin=None, tmax=None,
iir_filter=None)
noise = evoked_noise.data - evoked_clean.data
empirical_snr = 10 * np.log10(np.mean((evoked_clean.data ** 2).ravel()) /
np.mean((noise ** 2).ravel()))
assert_almost_equal(snr, empirical_snr, decimal=5)
cov['names'] = cov.ch_names[:-2] # Error channels are different.
assert_raises(ValueError, simulate_evoked, fwd, stc, evoked_template.info,
cov, snr=3., tmin=None, tmax=None, iir_filter=None)
run_tests_if_main()
|