1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
# Authors: Mark Wronkiewicz <wronk@uw.edu>
# Yousra Bekhti <yousra.bekhti@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import warnings
from copy import deepcopy
import numpy as np
from numpy.testing import assert_allclose, assert_array_equal
from nose.tools import assert_true, assert_raises, assert_equal
from mne import (read_source_spaces, pick_types, read_trans, read_cov,
make_sphere_model, create_info, setup_volume_source_space,
find_events, Epochs, fit_dipole, transform_surface_to,
make_ad_hoc_cov, SourceEstimate, setup_source_space)
from mne.chpi import (_calculate_chpi_positions, read_head_pos,
_get_hpi_info, head_pos_to_trans_rot_t)
from mne.tests.test_chpi import _compare_positions
from mne.datasets import testing
from mne.simulation import simulate_sparse_stc, simulate_raw
from mne.io import read_raw_fif, RawArray
from mne.time_frequency import psd_welch
from mne.utils import _TempDir, run_tests_if_main, requires_version, slow_test
warnings.simplefilter('always')
data_path = testing.data_path(download=False)
raw_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
cov_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-cov.fif')
trans_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-trans.fif')
subjects_dir = op.join(data_path, 'subjects')
bem_path = op.join(subjects_dir, 'sample', 'bem')
src_fname = op.join(bem_path, 'sample-oct-2-src.fif')
bem_fname = op.join(bem_path, 'sample-320-320-320-bem-sol.fif')
raw_chpi_fname = op.join(data_path, 'SSS', 'test_move_anon_raw.fif')
pos_fname = op.join(data_path, 'SSS', 'test_move_anon_raw_subsampled.pos')
def _make_stc(raw, src):
"""Helper to make a STC."""
seed = 42
sfreq = raw.info['sfreq'] # Hz
tstep = 1. / sfreq
n_samples = len(raw.times) // 10
times = np.arange(0, n_samples) * tstep
stc = simulate_sparse_stc(src, 10, times, random_state=seed)
return stc
def _get_data():
"""Helper to get some starting data."""
# raw with ECG channel
raw = read_raw_fif(raw_fname, add_eeg_ref=False)
raw.crop(0., 5.0, copy=False).load_data()
data_picks = pick_types(raw.info, meg=True, eeg=True)
other_picks = pick_types(raw.info, meg=False, stim=True, eog=True)
picks = np.sort(np.concatenate((data_picks[::16], other_picks)))
raw = raw.pick_channels([raw.ch_names[p] for p in picks])
raw.info.normalize_proj()
ecg = RawArray(np.zeros((1, len(raw.times))),
create_info(['ECG 063'], raw.info['sfreq'], 'ecg'))
for key in ('dev_head_t', 'buffer_size_sec', 'highpass', 'lowpass',
'filename', 'dig'):
ecg.info[key] = raw.info[key]
raw.add_channels([ecg])
src = read_source_spaces(src_fname)
trans = read_trans(trans_fname)
sphere = make_sphere_model('auto', 'auto', raw.info)
stc = _make_stc(raw, src)
return raw, src, stc, trans, sphere
@testing.requires_testing_data
def test_simulate_raw_sphere():
"""Test simulation of raw data with sphere model."""
seed = 42
raw, src, stc, trans, sphere = _get_data()
assert_true(len(pick_types(raw.info, meg=False, ecg=True)) == 1)
# head pos
head_pos_sim = dict()
# these will be at 1., 2., ... sec
shifts = [[0.001, 0., -0.001], [-0.001, 0.001, 0.]]
for time_key, shift in enumerate(shifts):
# Create 4x4 matrix transform and normalize
temp_trans = deepcopy(raw.info['dev_head_t'])
temp_trans['trans'][:3, 3] += shift
head_pos_sim[time_key + 1.] = temp_trans['trans']
#
# Test raw simulation with basic parameters
#
raw_sim = simulate_raw(raw, stc, trans, src, sphere, read_cov(cov_fname),
head_pos=head_pos_sim,
blink=True, ecg=True, random_state=seed)
raw_sim_2 = simulate_raw(raw, stc, trans_fname, src_fname, sphere,
cov_fname, head_pos=head_pos_sim,
blink=True, ecg=True, random_state=seed)
assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
# Test IO on processed data
tempdir = _TempDir()
test_outname = op.join(tempdir, 'sim_test_raw.fif')
raw_sim.save(test_outname)
raw_sim_loaded = read_raw_fif(test_outname, preload=True, proj=False,
add_eeg_ref=False)
assert_allclose(raw_sim_loaded[:][0], raw_sim[:][0], rtol=1e-6, atol=1e-20)
del raw_sim, raw_sim_2
# with no cov (no noise) but with artifacts, most time periods should match
# but the EOG/ECG channels should not
for ecg, eog in ((True, False), (False, True), (True, True)):
raw_sim_3 = simulate_raw(raw, stc, trans, src, sphere,
cov=None, head_pos=head_pos_sim,
blink=eog, ecg=ecg, random_state=seed)
raw_sim_4 = simulate_raw(raw, stc, trans, src, sphere,
cov=None, head_pos=head_pos_sim,
blink=False, ecg=False, random_state=seed)
picks = np.arange(len(raw.ch_names))
diff_picks = pick_types(raw.info, meg=False, ecg=ecg, eog=eog)
these_picks = np.setdiff1d(picks, diff_picks)
close = np.isclose(raw_sim_3[these_picks][0],
raw_sim_4[these_picks][0], atol=1e-20)
assert_true(np.mean(close) > 0.7)
far = ~np.isclose(raw_sim_3[diff_picks][0],
raw_sim_4[diff_picks][0], atol=1e-20)
assert_true(np.mean(far) > 0.99)
del raw_sim_3, raw_sim_4
# make sure it works with EEG-only and MEG-only
raw_sim_meg = simulate_raw(raw.copy().pick_types(meg=True, eeg=False),
stc, trans, src, sphere, cov=None,
ecg=True, blink=True, random_state=seed)
raw_sim_eeg = simulate_raw(raw.copy().pick_types(meg=False, eeg=True),
stc, trans, src, sphere, cov=None,
ecg=True, blink=True, random_state=seed)
raw_sim_meeg = simulate_raw(raw.copy().pick_types(meg=True, eeg=True),
stc, trans, src, sphere, cov=None,
ecg=True, blink=True, random_state=seed)
assert_allclose(np.concatenate((raw_sim_meg[:][0], raw_sim_eeg[:][0])),
raw_sim_meeg[:][0], rtol=1e-7, atol=1e-20)
del raw_sim_meg, raw_sim_eeg, raw_sim_meeg
# check that different interpolations are similar given small movements
raw_sim_cos = simulate_raw(raw, stc, trans, src, sphere,
head_pos=head_pos_sim,
random_state=seed)
raw_sim_lin = simulate_raw(raw, stc, trans, src, sphere,
head_pos=head_pos_sim, interp='linear',
random_state=seed)
assert_allclose(raw_sim_cos[:][0], raw_sim_lin[:][0],
rtol=1e-5, atol=1e-20)
del raw_sim_cos, raw_sim_lin
# Make impossible transform (translate up into helmet) and ensure failure
head_pos_sim_err = deepcopy(head_pos_sim)
head_pos_sim_err[1.][2, 3] -= 0.1 # z trans upward 10cm
assert_raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
ecg=False, blink=False, head_pos=head_pos_sim_err)
assert_raises(RuntimeError, simulate_raw, raw, stc, trans, src,
bem_fname, ecg=False, blink=False,
head_pos=head_pos_sim_err)
# other degenerate conditions
assert_raises(TypeError, simulate_raw, 'foo', stc, trans, src, sphere)
assert_raises(TypeError, simulate_raw, raw, 'foo', trans, src, sphere)
assert_raises(ValueError, simulate_raw, raw, stc.copy().crop(0, 0),
trans, src, sphere)
stc_bad = stc.copy()
stc_bad.tstep += 0.1
assert_raises(ValueError, simulate_raw, raw, stc_bad, trans, src, sphere)
assert_raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
chpi=True) # no cHPI info
assert_raises(ValueError, simulate_raw, raw, stc, trans, src, sphere,
interp='foo')
assert_raises(TypeError, simulate_raw, raw, stc, trans, src, sphere,
head_pos=1.)
assert_raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
head_pos=pos_fname) # ends up with t>t_end
head_pos_sim_err = deepcopy(head_pos_sim)
head_pos_sim_err[-1.] = head_pos_sim_err[1.] # negative time
assert_raises(RuntimeError, simulate_raw, raw, stc, trans, src, sphere,
head_pos=head_pos_sim_err)
raw_bad = raw.copy()
raw_bad.info['dig'] = None
assert_raises(RuntimeError, simulate_raw, raw_bad, stc, trans, src, sphere,
blink=True)
@testing.requires_testing_data
def test_simulate_raw_bem():
"""Test simulation of raw data with BEM."""
raw, src, stc, trans, sphere = _get_data()
src = setup_source_space('sample', None, 'oct1', subjects_dir=subjects_dir)
# use different / more complete STC here
vertices = [s['vertno'] for s in src]
stc = SourceEstimate(np.eye(sum(len(v) for v in vertices)), vertices,
0, 1. / raw.info['sfreq'])
raw_sim_sph = simulate_raw(raw, stc, trans, src, sphere, cov=None)
raw_sim_bem = simulate_raw(raw, stc, trans, src, bem_fname, cov=None,
n_jobs=2)
# some components (especially radial) might not match that well,
# so just make sure that most components have high correlation
assert_array_equal(raw_sim_sph.ch_names, raw_sim_bem.ch_names)
picks = pick_types(raw.info, meg=True, eeg=True)
n_ch = len(picks)
corr = np.corrcoef(raw_sim_sph[picks][0], raw_sim_bem[picks][0])
assert_array_equal(corr.shape, (2 * n_ch, 2 * n_ch))
assert_true(np.median(np.diag(corr[:n_ch, -n_ch:])) > 0.65)
# do some round-trip localization
for s in src:
transform_surface_to(s, 'head', trans)
locs = np.concatenate([s['rr'][s['vertno']] for s in src])
tmax = (len(locs) - 1) / raw.info['sfreq']
cov = make_ad_hoc_cov(raw.info)
# The tolerance for the BEM is surprisingly high (28) but I get the same
# result when using MNE-C and Xfit, even when using a proper 5120 BEM :(
for use_raw, bem, tol in ((raw_sim_sph, sphere, 1),
(raw_sim_bem, bem_fname, 28)):
events = find_events(use_raw, 'STI 014')
assert_equal(len(locs), 12) # oct1 count
evoked = Epochs(use_raw, events, 1, 0, tmax, baseline=None,
add_eeg_ref=False).average()
assert_equal(len(evoked.times), len(locs))
fits = fit_dipole(evoked, cov, bem, trans, min_dist=1.)[0].pos
diffs = np.sqrt(np.sum((locs - fits) ** 2, axis=-1)) * 1000
assert_true(np.median(diffs) < tol)
@slow_test
@requires_version('numpy', '1.7')
@requires_version('scipy', '0.12')
@testing.requires_testing_data
def test_simulate_raw_chpi():
"""Test simulation of raw data with cHPI."""
raw = read_raw_fif(raw_chpi_fname, allow_maxshield='yes',
add_eeg_ref=False)
sphere = make_sphere_model('auto', 'auto', raw.info)
# make sparse spherical source space
sphere_vol = tuple(sphere['r0'] * 1000.) + (sphere.radius * 1000.,)
src = setup_volume_source_space('sample', sphere=sphere_vol, pos=70.)
stc = _make_stc(raw, src)
# simulate data with cHPI on
raw_sim = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=False)
# need to trim extra samples off this one
raw_chpi = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=True,
head_pos=pos_fname)
# test cHPI indication
hpi_freqs, _, hpi_pick, hpi_ons = _get_hpi_info(raw.info)[:4]
assert_allclose(raw_sim[hpi_pick][0], 0.)
assert_allclose(raw_chpi[hpi_pick][0], hpi_ons.sum())
# test that the cHPI signals make some reasonable values
picks_meg = pick_types(raw.info, meg=True, eeg=False)
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
for picks in [picks_meg, picks_eeg]:
psd_sim, freqs_sim = psd_welch(raw_sim, picks=picks)
psd_chpi, freqs_chpi = psd_welch(raw_chpi, picks=picks)
assert_array_equal(freqs_sim, freqs_chpi)
freq_idx = np.sort([np.argmin(np.abs(freqs_sim - f))
for f in hpi_freqs])
if picks is picks_meg:
assert_true((psd_chpi[:, freq_idx] >
100 * psd_sim[:, freq_idx]).all())
else:
assert_allclose(psd_sim, psd_chpi, atol=1e-20)
# test localization based on cHPI information
quats_sim = _calculate_chpi_positions(raw_chpi)
trans_sim, rot_sim, t_sim = head_pos_to_trans_rot_t(quats_sim)
trans, rot, t = head_pos_to_trans_rot_t(read_head_pos(pos_fname))
t -= raw.first_samp / raw.info['sfreq']
_compare_positions((trans, rot, t), (trans_sim, rot_sim, t_sim),
max_dist=0.005)
run_tests_if_main()
|