1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Authors: Thorsten Kranz <thorstenkranz@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: Simplified BSD
import logging
import numpy as np
from scipy import sparse
from .parametric import f_oneway
from ..parallel import parallel_func, check_n_jobs
from ..utils import split_list, logger, verbose, ProgressBar, warn
from ..source_estimate import SourceEstimate
def _get_clusters_spatial(s, neighbors):
"""Helper function to form spatial clusters using neighbor lists
This is equivalent to _get_components with n_times = 1, with a properly
reconfigured connectivity matrix (formed as "neighbors" list)
"""
# s is a vector of spatial indices that are significant, like:
# s = np.where(x_in)[0]
# for x_in representing a single time-instant
r = np.ones(s.shape, dtype=bool)
clusters = list()
next_ind = 0 if s.size > 0 else None
while next_ind is not None:
# put first point in a cluster, adjust remaining
t_inds = [next_ind]
r[next_ind] = False
icount = 1 # count of nodes in the current cluster
while icount <= len(t_inds):
ind = t_inds[icount - 1]
# look across other vertices
buddies = np.where(r)[0]
buddies = buddies[np.in1d(s[buddies], neighbors[s[ind]],
assume_unique=True)]
t_inds += buddies.tolist()
r[buddies] = False
icount += 1
# this is equivalent to np.where(r)[0] for these purposes, but it's
# a little bit faster. Unfortunately there's no way to tell numpy
# just to find the first instance (to save checking every one):
next_ind = np.argmax(r)
if next_ind == 0:
next_ind = None
clusters.append(s[t_inds])
return clusters
def _reassign(check, clusters, base, num):
"""Helper function to reassign cluster numbers"""
# reconfigure check matrix
check[check == num] = base
# concatenate new values into clusters array
clusters[base - 1] = np.concatenate((clusters[base - 1],
clusters[num - 1]))
clusters[num - 1] = np.array([], dtype=int)
def _get_clusters_st_1step(keepers, neighbors):
"""Directly calculate connectivity based on knowledge that time points are
only connected to adjacent neighbors for data organized as time x space.
This algorithm time increases linearly with the number of time points,
compared to with the square for the standard (graph) algorithm.
This algorithm creates clusters for each time point using a method more
efficient than the standard graph method (but otherwise equivalent), then
combines these clusters across time points in a reasonable way."""
n_src = len(neighbors)
n_times = len(keepers)
# start cluster numbering at 1 for diffing convenience
enum_offset = 1
check = np.zeros((n_times, n_src), dtype=int)
clusters = list()
for ii, k in enumerate(keepers):
c = _get_clusters_spatial(k, neighbors)
for ci, cl in enumerate(c):
check[ii, cl] = ci + enum_offset
enum_offset += len(c)
# give them the correct offsets
c = [cl + ii * n_src for cl in c]
clusters += c
# now that each cluster has been assigned a unique number, combine them
# by going through each time point
for check1, check2, k in zip(check[:-1], check[1:], keepers[:-1]):
# go through each one that needs reassignment
inds = k[check2[k] - check1[k] > 0]
check1_d = check1[inds]
n = check2[inds]
nexts = np.unique(n)
for num in nexts:
prevs = check1_d[n == num]
base = np.min(prevs)
for pr in np.unique(prevs[prevs != base]):
_reassign(check1, clusters, base, pr)
# reassign values
_reassign(check2, clusters, base, num)
# clean up clusters
clusters = [cl for cl in clusters if len(cl) > 0]
return clusters
def _get_clusters_st_multistep(keepers, neighbors, max_step=1):
"""Directly calculate connectivity based on knowledge that time points are
only connected to adjacent neighbors for data organized as time x space.
This algorithm time increases linearly with the number of time points,
compared to with the square for the standard (graph) algorithm."""
n_src = len(neighbors)
n_times = len(keepers)
t_border = list()
t_border.append(0)
for ki, k in enumerate(keepers):
keepers[ki] = k + ki * n_src
t_border.append(t_border[ki] + len(k))
t_border = np.array(t_border)
keepers = np.concatenate(keepers)
v = keepers
t, s = divmod(v, n_src)
r = np.ones(t.shape, dtype=bool)
clusters = list()
next_ind = 0
inds = np.arange(t_border[0], t_border[n_times])
if s.size > 0:
while next_ind is not None:
# put first point in a cluster, adjust remaining
t_inds = [next_ind]
r[next_ind] = False
icount = 1 # count of nodes in the current cluster
# look for significant values at the next time point,
# same sensor, not placed yet, and add those
while icount <= len(t_inds):
ind = t_inds[icount - 1]
selves = inds[t_border[max(t[ind] - max_step, 0)]:
t_border[min(t[ind] + max_step + 1, n_times)]]
selves = selves[r[selves]]
selves = selves[s[ind] == s[selves]]
# look at current time point across other vertices
buddies = inds[t_border[t[ind]]:t_border[t[ind] + 1]]
buddies = buddies[r[buddies]]
buddies = buddies[np.in1d(s[buddies], neighbors[s[ind]],
assume_unique=True)]
buddies = np.concatenate((selves, buddies))
t_inds += buddies.tolist()
r[buddies] = False
icount += 1
# this is equivalent to np.where(r)[0] for these purposes, but it's
# a little bit faster. Unfortunately there's no way to tell numpy
# just to find the first instance (to save checking every one):
next_ind = np.argmax(r)
if next_ind == 0:
next_ind = None
clusters.append(v[t_inds])
return clusters
def _get_clusters_st(x_in, neighbors, max_step=1):
"""Helper function to choose the most efficient version"""
n_src = len(neighbors)
n_times = x_in.size // n_src
cl_goods = np.where(x_in)[0]
if len(cl_goods) > 0:
keepers = [np.array([], dtype=int)] * n_times
row, col = np.unravel_index(cl_goods, (n_times, n_src))
if isinstance(row, int):
row = [row]
col = [col]
lims = [0]
else:
order = np.argsort(row)
row = row[order]
col = col[order]
lims = [0] + (np.where(np.diff(row) > 0)[0] +
1).tolist() + [len(row)]
for start, end in zip(lims[:-1], lims[1:]):
keepers[row[start]] = np.sort(col[start:end])
if max_step == 1:
return _get_clusters_st_1step(keepers, neighbors)
else:
return _get_clusters_st_multistep(keepers, neighbors,
max_step)
else:
return []
def _get_components(x_in, connectivity, return_list=True):
"""get connected components from a mask and a connectivity matrix"""
try:
from sklearn.utils._csgraph import cs_graph_components
except ImportError:
try:
from scikits.learn.utils._csgraph import cs_graph_components
except ImportError:
try:
from sklearn.utils.sparsetools import connected_components
cs_graph_components = connected_components
except ImportError:
# in theory we might be able to shoehorn this into using
# _get_clusters_spatial if we transform connectivity into
# a neighbor list, and it might end up being faster anyway,
# but for now:
raise ImportError('scikit-learn must be installed')
mask = np.logical_and(x_in[connectivity.row], x_in[connectivity.col])
data = connectivity.data[mask]
row = connectivity.row[mask]
col = connectivity.col[mask]
shape = connectivity.shape
idx = np.where(x_in)[0]
row = np.concatenate((row, idx))
col = np.concatenate((col, idx))
data = np.concatenate((data, np.ones(len(idx), dtype=data.dtype)))
connectivity = sparse.coo_matrix((data, (row, col)), shape=shape)
_, components = cs_graph_components(connectivity)
if return_list:
start = np.min(components)
stop = np.max(components)
comp_list = [list() for i in range(start, stop + 1, 1)]
mask = np.zeros(len(comp_list), dtype=bool)
for ii, comp in enumerate(components):
comp_list[comp].append(ii)
mask[comp] += x_in[ii]
clusters = [np.array(k) for k, m in zip(comp_list, mask) if m]
return clusters
else:
return components
def _find_clusters(x, threshold, tail=0, connectivity=None, max_step=1,
include=None, partitions=None, t_power=1, show_info=False):
"""For a given 1d-array (test statistic), find all clusters which
are above/below a certain threshold. Returns a list of 2-tuples.
When doing a two-tailed test (tail == 0), only points with the same
sign will be clustered together.
Parameters
----------
x : 1D array
Data
threshold : float | dict
Where to threshold the statistic. Should be negative for tail == -1,
and positive for tail == 0 or 1. Can also be an dict for
threshold-free cluster enhancement.
tail : -1 | 0 | 1
Type of comparison
connectivity : sparse matrix in COO format, None, or list
Defines connectivity between features. The matrix is assumed to
be symmetric and only the upper triangular half is used.
If connectivity is a list, it is assumed that each entry stores the
indices of the spatial neighbors in a spatio-temporal dataset x.
Default is None, i.e, a regular lattice connectivity.
max_step : int
If connectivity is a list, this defines the maximal number of steps
between vertices along the second dimension (typically time) to be
considered connected.
include : 1D bool array or None
Mask to apply to the data of points to cluster. If None, all points
are used.
partitions : array of int or None
An array (same size as X) of integers indicating which points belong
to each partition.
t_power : float
Power to raise the statistical values (usually t-values) by before
summing (sign will be retained). Note that t_power == 0 will give a
count of nodes in each cluster, t_power == 1 will weight each node by
its statistical score.
show_info : bool
If True, display information about thresholds used (for TFCE). Should
only be done for the standard permutation.
Returns
-------
clusters : list of slices or list of arrays (boolean masks)
We use slices for 1D signals and mask to multidimensional
arrays.
sums: array
Sum of x values in clusters.
"""
from scipy import ndimage
if tail not in [-1, 0, 1]:
raise ValueError('invalid tail parameter')
x = np.asanyarray(x)
if not np.isscalar(threshold):
if not isinstance(threshold, dict):
raise TypeError('threshold must be a number, or a dict for '
'threshold-free cluster enhancement')
if not all(key in threshold for key in ['start', 'step']):
raise KeyError('threshold, if dict, must have at least '
'"start" and "step"')
tfce = True
if tail == -1:
if threshold['start'] > 0:
raise ValueError('threshold["start"] must be <= 0 for '
'tail == -1')
if threshold['step'] >= 0:
raise ValueError('threshold["step"] must be < 0 for '
'tail == -1')
stop = np.min(x)
elif tail == 1:
stop = np.max(x)
else: # tail == 0
stop = np.max(np.abs(x))
thresholds = np.arange(threshold['start'], stop,
threshold['step'], float)
h_power = threshold.get('h_power', 2)
e_power = threshold.get('e_power', 0.5)
if show_info is True:
if len(thresholds) == 0:
warn('threshold["start"] (%s) is more extreme than data '
'statistics with most extreme value %s'
% (threshold['start'], stop))
else:
logger.info('Using %d thresholds from %0.2f to %0.2f for TFCE '
'computation (h_power=%0.2f, e_power=%0.2f)'
% (len(thresholds), thresholds[0], thresholds[-1],
h_power, e_power))
scores = np.zeros(x.size)
else:
thresholds = [threshold]
tfce = False
# include all points by default
if include is None:
include = np.ones(x.shape, dtype=bool)
if not np.all(np.diff(thresholds) > 0):
raise RuntimeError('Threshold misconfiguration, must be monotonically'
' increasing')
# set these here just in case thresholds == []
clusters = list()
sums = np.empty(0)
for ti, thresh in enumerate(thresholds):
# these need to be reset on each run
clusters = list()
sums = np.empty(0)
if tail == 0:
x_ins = [np.logical_and(x > thresh, include),
np.logical_and(x < -thresh, include)]
elif tail == -1:
x_ins = [np.logical_and(x < thresh, include)]
else: # tail == 1
x_ins = [np.logical_and(x > thresh, include)]
# loop over tails
for x_in in x_ins:
if np.any(x_in):
out = _find_clusters_1dir_parts(x, x_in, connectivity,
max_step, partitions, t_power,
ndimage)
clusters += out[0]
sums = np.concatenate((sums, out[1]))
if tfce is True:
# the score of each point is the sum of the h^H * e^E for each
# supporting section "rectangle" h x e.
if ti == 0:
h = abs(thresh)
else:
h = abs(thresh - thresholds[ti - 1])
h = h ** h_power
for c in clusters:
# triage based on cluster storage type
if isinstance(c, slice):
len_c = c.stop - c.start
elif isinstance(c, tuple):
len_c = len(c)
elif c.dtype == bool:
len_c = np.sum(c)
else:
len_c = len(c)
scores[c] += h * (len_c ** e_power)
if tfce is True:
# each point gets treated independently
clusters = np.arange(x.size)
if connectivity is None:
if x.ndim == 1:
# slices
clusters = [slice(c, c + 1) for c in clusters]
else:
# boolean masks (raveled)
clusters = [(clusters == ii).ravel()
for ii in range(len(clusters))]
else:
clusters = [np.array([c]) for c in clusters]
sums = scores
return clusters, sums
def _find_clusters_1dir_parts(x, x_in, connectivity, max_step, partitions,
t_power, ndimage):
"""Deal with partitions, and pass the work to _find_clusters_1dir
"""
if partitions is None:
clusters, sums = _find_clusters_1dir(x, x_in, connectivity, max_step,
t_power, ndimage)
else:
# cluster each partition separately
clusters = list()
sums = list()
for p in range(np.max(partitions) + 1):
x_i = np.logical_and(x_in, partitions == p)
out = _find_clusters_1dir(x, x_i, connectivity, max_step, t_power,
ndimage)
clusters += out[0]
sums.append(out[1])
sums = np.concatenate(sums)
return clusters, sums
def _find_clusters_1dir(x, x_in, connectivity, max_step, t_power, ndimage):
"""Actually call the clustering algorithm"""
if connectivity is None:
labels, n_labels = ndimage.label(x_in)
if x.ndim == 1:
# slices
clusters = ndimage.find_objects(labels, n_labels)
if len(clusters) == 0:
sums = list()
else:
index = list(range(1, n_labels + 1))
if t_power == 1:
sums = ndimage.measurements.sum(x, labels, index=index)
else:
sums = ndimage.measurements.sum(np.sign(x) *
np.abs(x) ** t_power,
labels, index=index)
else:
# boolean masks (raveled)
clusters = list()
sums = np.empty(n_labels)
for l in range(1, n_labels + 1):
c = labels == l
clusters.append(c.ravel())
if t_power == 1:
sums[l - 1] = np.sum(x[c])
else:
sums[l - 1] = np.sum(np.sign(x[c]) *
np.abs(x[c]) ** t_power)
else:
if x.ndim > 1:
raise Exception("Data should be 1D when using a connectivity "
"to define clusters.")
if isinstance(connectivity, sparse.spmatrix):
clusters = _get_components(x_in, connectivity)
elif isinstance(connectivity, list): # use temporal adjacency
clusters = _get_clusters_st(x_in, connectivity, max_step)
else:
raise ValueError('Connectivity must be a sparse matrix or list')
if t_power == 1:
sums = np.array([np.sum(x[c]) for c in clusters])
else:
sums = np.array([np.sum(np.sign(x[c]) * np.abs(x[c]) ** t_power)
for c in clusters])
return clusters, np.atleast_1d(sums)
def _cluster_indices_to_mask(components, n_tot):
"""Convert to the old format of clusters, which were bool arrays"""
for ci, c in enumerate(components):
components[ci] = np.zeros((n_tot), dtype=bool)
components[ci][c] = True
return components
def _cluster_mask_to_indices(components):
"""Convert to the old format of clusters, which were bool arrays"""
for ci, c in enumerate(components):
if not isinstance(c, slice):
components[ci] = np.where(c)[0]
return components
def _pval_from_histogram(T, H0, tail):
"""Get p-values from stats values given an H0 distribution
For each stat compute a p-value as percentile of its statistics
within all statistics in surrogate data
"""
if tail not in [-1, 0, 1]:
raise ValueError('invalid tail parameter')
# from pct to fraction
if tail == -1: # up tail
pval = np.array([np.sum(H0 <= t) for t in T])
elif tail == 1: # low tail
pval = np.array([np.sum(H0 >= t) for t in T])
else: # both tails
pval = np.array([np.sum(abs(H0) >= abs(t)) for t in T])
pval = (pval + 1.0) / (H0.size + 1.0) # the init data is one resampling
return pval
def _setup_connectivity(connectivity, n_vertices, n_times):
if connectivity.shape[0] == n_vertices: # use global algorithm
connectivity = connectivity.tocoo()
n_times = None
else: # use temporal adjacency algorithm
if not round(n_vertices / float(connectivity.shape[0])) == n_times:
raise ValueError('connectivity must be of the correct size')
# we claim to only use upper triangular part... not true here
connectivity = (connectivity + connectivity.transpose()).tocsr()
connectivity = [connectivity.indices[connectivity.indptr[i]:
connectivity.indptr[i + 1]] for i in
range(len(connectivity.indptr) - 1)]
return connectivity
def _do_permutations(X_full, slices, threshold, tail, connectivity, stat_fun,
max_step, include, partitions, t_power, seeds,
sample_shape, buffer_size, progress_bar):
n_samp, n_vars = X_full.shape
if buffer_size is not None and n_vars <= buffer_size:
buffer_size = None # don't use buffer for few variables
# allocate space for output
max_cluster_sums = np.empty(len(seeds), dtype=np.double)
if buffer_size is not None:
# allocate buffer, so we don't need to allocate memory during loop
X_buffer = [np.empty((len(X_full[s]), buffer_size), dtype=X_full.dtype)
for s in slices]
for seed_idx, seed in enumerate(seeds):
if progress_bar is not None:
if (not (seed_idx + 1) % 32) or (seed_idx == 0):
progress_bar.update(seed_idx + 1)
# shuffle sample indices
rng = np.random.RandomState(seed)
idx_shuffled = np.arange(n_samp)
rng.shuffle(idx_shuffled)
idx_shuffle_list = [idx_shuffled[s] for s in slices]
if buffer_size is None:
# shuffle all data at once
X_shuffle_list = [X_full[idx, :] for idx in idx_shuffle_list]
T_obs_surr = stat_fun(*X_shuffle_list)
else:
# only shuffle a small data buffer, so we need less memory
T_obs_surr = np.empty(n_vars, dtype=X_full.dtype)
for pos in range(0, n_vars, buffer_size):
# number of variables for this loop
n_var_loop = min(pos + buffer_size, n_vars) - pos
# fill buffer
for i, idx in enumerate(idx_shuffle_list):
X_buffer[i][:, :n_var_loop] =\
X_full[idx, pos: pos + n_var_loop]
# apply stat_fun and store result
tmp = stat_fun(*X_buffer)
T_obs_surr[pos: pos + n_var_loop] = tmp[:n_var_loop]
# The stat should have the same shape as the samples for no conn.
if connectivity is None:
T_obs_surr.shape = sample_shape
# Find cluster on randomized stats
out = _find_clusters(T_obs_surr, threshold=threshold, tail=tail,
max_step=max_step, connectivity=connectivity,
partitions=partitions, include=include,
t_power=t_power)
perm_clusters_sums = out[1]
if len(perm_clusters_sums) > 0:
max_cluster_sums[seed_idx] = np.max(perm_clusters_sums)
else:
max_cluster_sums[seed_idx] = 0
return max_cluster_sums
def _do_1samp_permutations(X, slices, threshold, tail, connectivity, stat_fun,
max_step, include, partitions, t_power, seeds,
sample_shape, buffer_size, progress_bar):
n_samp, n_vars = X.shape
assert slices is None # should be None for the 1 sample case
if buffer_size is not None and n_vars <= buffer_size:
buffer_size = None # don't use buffer for few variables
# allocate space for output
max_cluster_sums = np.empty(len(seeds), dtype=np.double)
if buffer_size is not None:
# allocate a buffer so we don't need to allocate memory in loop
X_flip_buffer = np.empty((n_samp, buffer_size), dtype=X.dtype)
for seed_idx, seed in enumerate(seeds):
if progress_bar is not None:
if not (seed_idx + 1) % 32 or seed_idx == 0:
progress_bar.update(seed_idx + 1)
if isinstance(seed, np.ndarray):
# new surrogate data with specified sign flip
if not seed.size == n_samp:
raise ValueError('rng string must be n_samples long')
signs = 2 * seed[:, None].astype(int) - 1
if not np.all(np.equal(np.abs(signs), 1)):
raise ValueError('signs from rng must be +/- 1')
else:
rng = np.random.RandomState(seed)
# new surrogate data with random sign flip
signs = np.sign(0.5 - rng.rand(n_samp))
signs = signs[:, np.newaxis]
if buffer_size is None:
# be careful about non-writable memmap (GH#1507)
if X.flags.writeable:
X *= signs
# Recompute statistic on randomized data
T_obs_surr = stat_fun(X)
# Set X back to previous state (trade memory eff. for CPU use)
X *= signs
else:
T_obs_surr = stat_fun(X * signs)
else:
# only sign-flip a small data buffer, so we need less memory
T_obs_surr = np.empty(n_vars, dtype=X.dtype)
for pos in range(0, n_vars, buffer_size):
# number of variables for this loop
n_var_loop = min(pos + buffer_size, n_vars) - pos
X_flip_buffer[:, :n_var_loop] =\
signs * X[:, pos: pos + n_var_loop]
# apply stat_fun and store result
tmp = stat_fun(X_flip_buffer)
T_obs_surr[pos: pos + n_var_loop] = tmp[:n_var_loop]
# The stat should have the same shape as the samples for no conn.
if connectivity is None:
T_obs_surr.shape = sample_shape
# Find cluster on randomized stats
out = _find_clusters(T_obs_surr, threshold=threshold, tail=tail,
max_step=max_step, connectivity=connectivity,
partitions=partitions, include=include,
t_power=t_power)
perm_clusters_sums = out[1]
if len(perm_clusters_sums) > 0:
# get max with sign info
idx_max = np.argmax(np.abs(perm_clusters_sums))
max_cluster_sums[seed_idx] = perm_clusters_sums[idx_max]
else:
max_cluster_sums[seed_idx] = 0
return max_cluster_sums
@verbose
def _permutation_cluster_test(X, threshold, n_permutations, tail, stat_fun,
connectivity, verbose, n_jobs, seed, max_step,
exclude, step_down_p, t_power, out_type,
check_disjoint, buffer_size):
n_jobs = check_n_jobs(n_jobs)
""" Aux Function
Note. X is required to be a list. Depending on the length of X
either a 1 sample t-test or an f-test / more sample permutation scheme
is elicited.
"""
if out_type not in ['mask', 'indices']:
raise ValueError('out_type must be either \'mask\' or \'indices\'')
# check dimensions for each group in X (a list at this stage).
X = [x[:, np.newaxis] if x.ndim == 1 else x for x in X]
n_samples = X[0].shape[0]
n_times = X[0].shape[1]
sample_shape = X[0].shape[1:]
for x in X:
if x.shape[1:] != sample_shape:
raise ValueError('All samples mush have the same size')
# flatten the last dimensions in case the data is high dimensional
X = [np.reshape(x, (x.shape[0], -1)) for x in X]
n_tests = X[0].shape[1]
if connectivity is not None:
connectivity = _setup_connectivity(connectivity, n_tests, n_times)
if (exclude is not None) and not exclude.size == n_tests:
raise ValueError('exclude must be the same shape as X[0]')
# Step 1: Calculate T-stat for original data
# -------------------------------------------------------------
T_obs = stat_fun(*X)
logger.info('stat_fun(H1): min=%f max=%f' % (np.min(T_obs), np.max(T_obs)))
# test if stat_fun treats variables independently
if buffer_size is not None:
T_obs_buffer = np.zeros_like(T_obs)
for pos in range(0, n_tests, buffer_size):
T_obs_buffer[pos: pos + buffer_size] =\
stat_fun(*[x[:, pos: pos + buffer_size] for x in X])
if not np.alltrue(T_obs == T_obs_buffer):
warn('Provided stat_fun does not treat variables independently. '
'Setting buffer_size to None.')
buffer_size = None
# The stat should have the same shape as the samples for no conn.
if connectivity is None:
T_obs.shape = sample_shape
if exclude is not None:
include = np.logical_not(exclude)
else:
include = None
# determine if connectivity itself can be separated into disjoint sets
if check_disjoint is True and connectivity is not None:
partitions = _get_partitions_from_connectivity(connectivity, n_times)
else:
partitions = None
logger.info('Running initial clustering')
out = _find_clusters(T_obs, threshold, tail, connectivity,
max_step=max_step, include=include,
partitions=partitions, t_power=t_power,
show_info=True)
clusters, cluster_stats = out
# For TFCE, return the "adjusted" statistic instead of raw scores
if isinstance(threshold, dict):
T_obs = cluster_stats.copy()
logger.info('Found %d clusters' % len(clusters))
# convert clusters to old format
if connectivity is not None:
# our algorithms output lists of indices by default
if out_type == 'mask':
clusters = _cluster_indices_to_mask(clusters, n_tests)
else:
# ndimage outputs slices or boolean masks by default
if out_type == 'indices':
clusters = _cluster_mask_to_indices(clusters)
# The stat should have the same shape as the samples
T_obs.shape = sample_shape
if len(X) == 1: # 1 sample test
do_perm_func = _do_1samp_permutations
X_full = X[0]
slices = None
else:
do_perm_func = _do_permutations
X_full = np.concatenate(X, axis=0)
n_samples_per_condition = [x.shape[0] for x in X]
splits_idx = np.append([0], np.cumsum(n_samples_per_condition))
slices = [slice(splits_idx[k], splits_idx[k + 1])
for k in range(len(X))]
parallel, my_do_perm_func, _ = parallel_func(do_perm_func, n_jobs)
# Step 2: If we have some clusters, repeat process on permuted data
# -------------------------------------------------------------------
def get_progress_bar(seeds):
# make sure the progress bar adds to up 100% across n jobs
return (ProgressBar(len(seeds), spinner=True) if
logger.level <= logging.INFO else None)
if len(clusters) > 0:
# check to see if we can do an exact test
# note for a two-tailed test, we can exploit symmetry to just do half
seeds = None
if len(X) == 1:
max_perms = 2 ** (n_samples - (tail == 0))
if max_perms <= n_permutations:
# omit first perm b/c accounted for in _pval_from_histogram,
# convert to binary array representation
seeds = [np.fromiter(np.binary_repr(s, n_samples), dtype=int)
for s in range(1, max_perms)]
if seeds is None:
if seed is None:
seeds = [None] * n_permutations
else:
seeds = list(seed + np.arange(n_permutations))
# Step 3: repeat permutations for step-down-in-jumps procedure
n_removed = 1 # number of new clusters added
total_removed = 0
step_down_include = None # start out including all points
n_step_downs = 0
while n_removed > 0:
# actually do the clustering for each partition
if include is not None:
if step_down_include is not None:
this_include = np.logical_and(include, step_down_include)
else:
this_include = include
else:
this_include = step_down_include
logger.info('Permuting ...')
H0 = parallel(my_do_perm_func(X_full, slices, threshold, tail,
connectivity, stat_fun, max_step, this_include,
partitions, t_power, s, sample_shape, buffer_size,
get_progress_bar(s))
for s in split_list(seeds, n_jobs))
H0 = np.concatenate(H0)
logger.info('Computing cluster p-values')
cluster_pv = _pval_from_histogram(cluster_stats, H0, tail)
# figure out how many new ones will be removed for step-down
to_remove = np.where(cluster_pv < step_down_p)[0]
n_removed = to_remove.size - total_removed
total_removed = to_remove.size
step_down_include = np.ones(n_tests, dtype=bool)
for ti in to_remove:
step_down_include[clusters[ti]] = False
if connectivity is None:
step_down_include.shape = sample_shape
n_step_downs += 1
if step_down_p > 0:
a_text = 'additional ' if n_step_downs > 1 else ''
pl = '' if n_removed == 1 else 's'
logger.info('Step-down-in-jumps iteration #%i found %i %s'
'cluster%s to exclude from subsequent iterations'
% (n_step_downs, n_removed, a_text, pl))
logger.info('Done.')
# The clusters should have the same shape as the samples
clusters = _reshape_clusters(clusters, sample_shape)
return T_obs, clusters, cluster_pv, H0
else:
return T_obs, np.array([]), np.array([]), np.array([])
def ttest_1samp_no_p(X, sigma=0, method='relative'):
"""t-test with variance adjustment and no p-value calculation
Parameters
----------
X : array
Array to return t-values for.
sigma : float
The variance estate will be given by "var + sigma * max(var)" or
"var + sigma", depending on "method". By default this is 0 (no
adjustment). See Notes for details.
method : str
If 'relative', the minimum variance estimate will be sigma * max(var),
if 'absolute' the minimum variance estimate will be sigma.
Returns
-------
t : array
t-values, potentially adjusted using the hat method.
Notes
-----
One can use the conversion:
threshold = -scipy.stats.distributions.t.ppf(p_thresh, n_samples - 1)
to convert a desired p-value threshold to t-value threshold. Don't forget
that for two-tailed tests, p_thresh in the above should be divided by 2.
To use the "hat" adjustment method, a value of sigma=1e-3 may be a
reasonable choice. See Ridgway et al. 2012 "The problem of low variance
voxels in statistical parametric mapping; a new hat avoids a 'haircut'",
NeuroImage. 2012 Feb 1;59(3):2131-41.
"""
if method not in ['absolute', 'relative']:
raise ValueError('method must be "absolute" or "relative", not %s'
% method)
var = np.var(X, axis=0, ddof=1)
if sigma > 0:
limit = sigma * np.max(var) if method == 'relative' else sigma
var += limit
return np.mean(X, axis=0) / np.sqrt(var / X.shape[0])
@verbose
def permutation_cluster_test(X, threshold=None, n_permutations=1024,
tail=0, stat_fun=f_oneway,
connectivity=None, verbose=None, n_jobs=1,
seed=None, max_step=1, exclude=None,
step_down_p=0, t_power=1, out_type='mask',
check_disjoint=False, buffer_size=1000):
"""Cluster-level statistical permutation test
For a list of nd-arrays of data, e.g. 2d for time series or 3d for
time-frequency power values, calculate some statistics corrected for
multiple comparisons using permutations and cluster level correction.
Each element of the list X contains the data for one group of
observations. Randomized data are generated with random partitions
of the data.
Parameters
----------
X : list
List of nd-arrays containing the data. Each element of X contains
the samples for one group. First dimension of each element is the
number of samples/observations in this group. The other dimensions
are for the size of the observations. For example if X = [X1, X2]
with X1.shape = (20, 50, 4) and X2.shape = (17, 50, 4) one has
2 groups with respectively 20 and 17 observations in each.
Each data point is of shape (50, 4).
threshold : float | dict | None
If threshold is None, it will choose a t-threshold equivalent to
p < 0.05 for the given number of (within-subject) observations.
If a dict is used, then threshold-free cluster enhancement (TFCE)
will be used.
n_permutations : int
The number of permutations to compute.
tail : -1 or 0 or 1 (default = 0)
If tail is 1, the statistic is thresholded above threshold.
If tail is -1, the statistic is thresholded below threshold.
If tail is 0, the statistic is thresholded on both sides of
the distribution.
stat_fun : callable
function called to calculate statistics, must accept 1d-arrays as
arguments (default: scipy.stats.f_oneway).
connectivity : sparse matrix.
Defines connectivity between features. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is None, i.e, a regular lattice connectivity.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
n_jobs : int
Number of permutations to run in parallel (requires joblib package).
seed : int or None
Seed the random number generator for results reproducibility.
max_step : int
When connectivity is a n_vertices x n_vertices matrix, specify the
maximum number of steps between vertices along the second dimension
(typically time) to be considered connected. This is not used for full
or None connectivity matrices.
exclude : boolean array or None
Mask to apply to the data to exclude certain points from clustering
(e.g., medial wall vertices). Should be the same shape as X. If None,
no points are excluded.
step_down_p : float
To perform a step-down-in-jumps test, pass a p-value for clusters to
exclude from each successive iteration. Default is zero, perform no
step-down test (since no clusters will be smaller than this value).
Setting this to a reasonable value, e.g. 0.05, can increase sensitivity
but costs computation time.
t_power : float
Power to raise the statistical values (usually f-values) by before
summing (sign will be retained). Note that t_power == 0 will give a
count of nodes in each cluster, t_power == 1 will weight each node by
its statistical score.
out_type : str
For arrays with connectivity, this sets the output format for clusters.
If 'mask', it will pass back a list of boolean mask arrays.
If 'indices', it will pass back a list of lists, where each list is the
set of vertices in a given cluster. Note that the latter may use far
less memory for large datasets.
check_disjoint : bool
If True, the connectivity matrix (or list) will be examined to
determine of it can be separated into disjoint sets. In some cases
(usually with connectivity as a list and many "time" points), this
can lead to faster clustering, but results should be identical.
buffer_size: int or None
The statistics will be computed for blocks of variables of size
"buffer_size" at a time. This is option significantly reduces the
memory requirements when n_jobs > 1 and memory sharing between
processes is enabled (see set_cache_dir()), as X will be shared
between processes and each process only needs to allocate space
for a small block of variables.
Returns
-------
T_obs : array of shape [n_tests]
T-statistic observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster
H0 : array of shape [n_permutations]
Max cluster level stats observed under permutation.
Notes
-----
Reference:
Cluster permutation algorithm as described in
Maris/Oostenveld (2007),
"Nonparametric statistical testing of EEG- and MEG-data"
Journal of Neuroscience Methods, Vol. 164, No. 1., pp. 177-190.
doi:10.1016/j.jneumeth.2007.03.024
"""
from scipy import stats
ppf = stats.f.ppf
if threshold is None:
p_thresh = 0.05 / (1 + (tail == 0))
n_samples_per_group = [len(x) for x in X]
threshold = ppf(1. - p_thresh, *n_samples_per_group)
if np.sign(tail) < 0:
threshold = -threshold
return _permutation_cluster_test(X=X, threshold=threshold,
n_permutations=n_permutations,
tail=tail, stat_fun=stat_fun,
connectivity=connectivity,
verbose=verbose,
n_jobs=n_jobs, seed=seed,
max_step=max_step,
exclude=exclude, step_down_p=step_down_p,
t_power=t_power, out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size)
permutation_cluster_test.__test__ = False
@verbose
def permutation_cluster_1samp_test(X, threshold=None, n_permutations=1024,
tail=0, stat_fun=ttest_1samp_no_p,
connectivity=None, verbose=None, n_jobs=1,
seed=None, max_step=1, exclude=None,
step_down_p=0, t_power=1, out_type='mask',
check_disjoint=False, buffer_size=1000):
"""Non-parametric cluster-level 1 sample T-test
From a array of observations, e.g. signal amplitudes or power spectrum
estimates etc., calculate if the observed mean significantly deviates
from 0. The procedure uses a cluster analysis with permutation test
for calculating corrected p-values. Randomized data are generated with
random sign flips.
Parameters
----------
X : array, shape=(n_samples, p, q) or (n_samples, p)
Array where the first dimension corresponds to the
samples (observations). X[k] can be a 1D or 2D array (time series
or TF image) associated to the kth observation.
threshold : float | dict | None
If threshold is None, it will choose a t-threshold equivalent to
p < 0.05 for the given number of (within-subject) observations.
If a dict is used, then threshold-free cluster enhancement (TFCE)
will be used.
n_permutations : int
The number of permutations to compute.
tail : -1 or 0 or 1 (default = 0)
If tail is 1, the statistic is thresholded above threshold.
If tail is -1, the statistic is thresholded below threshold.
If tail is 0, the statistic is thresholded on both sides of
the distribution.
stat_fun : function
Function used to compute the statistical map.
connectivity : sparse matrix or None
Defines connectivity between features. The matrix is assumed to
be symmetric and only the upper triangular half is used.
This matrix must be square with dimension (n_vertices * n_times) or
(n_vertices). Default is None, i.e, a regular lattice connectivity.
Use square n_vertices matrix for datasets with a large temporal
extent to save on memory and computation time.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
n_jobs : int
Number of permutations to run in parallel (requires joblib package).
seed : int or None
Seed the random number generator for results reproducibility.
Note that if n_permutations >= 2^(n_samples) [or (2^(n_samples-1)) for
two-tailed tests], this value will be ignored since an exact test
(full permutation test) will be performed.
max_step : int
When connectivity is a n_vertices x n_vertices matrix, specify the
maximum number of steps between vertices along the second dimension
(typically time) to be considered connected. This is not used for full
or None connectivity matrices.
exclude : boolean array or None
Mask to apply to the data to exclude certain points from clustering
(e.g., medial wall vertices). Should be the same shape as X. If None,
no points are excluded.
step_down_p : float
To perform a step-down-in-jumps test, pass a p-value for clusters to
exclude from each successive iteration. Default is zero, perform no
step-down test (since no clusters will be smaller than this value).
Setting this to a reasonable value, e.g. 0.05, can increase sensitivity
but costs computation time.
t_power : float
Power to raise the statistical values (usually t-values) by before
summing (sign will be retained). Note that t_power == 0 will give a
count of nodes in each cluster, t_power == 1 will weight each node by
its statistical score.
out_type : str
For arrays with connectivity, this sets the output format for clusters.
If 'mask', it will pass back a list of boolean mask arrays.
If 'indices', it will pass back a list of lists, where each list is the
set of vertices in a given cluster. Note that the latter may use far
less memory for large datasets.
check_disjoint : bool
If True, the connectivity matrix (or list) will be examined to
determine of it can be separated into disjoint sets. In some cases
(usually with connectivity as a list and many "time" points), this
can lead to faster clustering, but results should be identical.
buffer_size: int or None
The statistics will be computed for blocks of variables of size
"buffer_size" at a time. This is option significantly reduces the
memory requirements when n_jobs > 1 and memory sharing between
processes is enabled (see set_cache_dir()), as X will be shared
between processes and each process only needs to allocate space
for a small block of variables.
Returns
-------
T_obs : array of shape [n_tests]
T-statistic observed for all variables
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster
H0 : array of shape [n_permutations]
Max cluster level stats observed under permutation.
Notes
-----
Reference:
Cluster permutation algorithm as described in
Maris/Oostenveld (2007),
"Nonparametric statistical testing of EEG- and MEG-data"
Journal of Neuroscience Methods, Vol. 164, No. 1., pp. 177-190.
doi:10.1016/j.jneumeth.2007.03.024
"""
from scipy import stats
ppf = stats.t.ppf
if threshold is None:
p_thresh = 0.05 / (1 + (tail == 0))
n_samples = len(X)
threshold = -ppf(p_thresh, n_samples - 1)
if np.sign(tail) < 0:
threshold = -threshold
X = [X] # for one sample only one data array
return _permutation_cluster_test(X=X,
threshold=threshold,
n_permutations=n_permutations,
tail=tail, stat_fun=stat_fun,
connectivity=connectivity,
verbose=verbose,
n_jobs=n_jobs, seed=seed,
max_step=max_step,
exclude=exclude, step_down_p=step_down_p,
t_power=t_power, out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size)
permutation_cluster_1samp_test.__test__ = False
@verbose
def spatio_temporal_cluster_1samp_test(X, threshold=None,
n_permutations=1024, tail=0,
stat_fun=ttest_1samp_no_p,
connectivity=None, verbose=None,
n_jobs=1, seed=None, max_step=1,
spatial_exclude=None, step_down_p=0,
t_power=1, out_type='indices',
check_disjoint=False, buffer_size=1000):
"""Non-parametric cluster-level 1 sample T-test for spatio-temporal data
This function provides a convenient wrapper for data organized in the form
(observations x time x space) to use permutation_cluster_1samp_test.
Parameters
----------
X : array
Array of shape observations x time x vertices.
threshold : float | dict | None
If threshold is None, it will choose a t-threshold equivalent to
p < 0.05 for the given number of (within-subject) observations.
If a dict is used, then threshold-free cluster enhancement (TFCE)
will be used.
n_permutations : int
The number of permutations to compute.
tail : -1 or 0 or 1 (default = 0)
If tail is 1, the statistic is thresholded above threshold.
If tail is -1, the statistic is thresholded below threshold.
If tail is 0, the statistic is thresholded on both sides of
the distribution.
stat_fun : function
Function used to compute the statistical map.
connectivity : sparse matrix or None
Defines connectivity between features. The matrix is assumed to
be symmetric and only the upper triangular half is used.
This matrix must be square with dimension (n_vertices * n_times) or
(n_vertices). Default is None, i.e, a regular lattice connectivity.
Use square n_vertices matrix for datasets with a large temporal
extent to save on memory and computation time.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
n_jobs : int
Number of permutations to run in parallel (requires joblib package).
seed : int or None
Seed the random number generator for results reproducibility.
Note that if n_permutations >= 2^(n_samples) [or (2^(n_samples-1)) for
two-tailed tests], this value will be ignored since an exact test
(full permutation test) will be performed.
max_step : int
When connectivity is a n_vertices x n_vertices matrix, specify the
maximum number of steps between vertices along the second dimension
(typically time) to be considered connected. This is not used for full
or None connectivity matrices.
spatial_exclude : list of int or None
List of spatial indices to exclude from clustering.
step_down_p : float
To perform a step-down-in-jumps test, pass a p-value for clusters to
exclude from each successive iteration. Default is zero, perform no
step-down test (since no clusters will be smaller than this value).
Setting this to a reasonable value, e.g. 0.05, can increase sensitivity
but costs computation time.
t_power : float
Power to raise the statistical values (usually t-values) by before
summing (sign will be retained). Note that t_power == 0 will give a
count of nodes in each cluster, t_power == 1 will weight each node by
its statistical score.
out_type : str
For arrays with connectivity, this sets the output format for clusters.
If 'mask', it will pass back a list of boolean mask arrays.
If 'indices', it will pass back a list of lists, where each list is the
set of vertices in a given cluster. Note that the latter may use far
less memory for large datasets.
check_disjoint : bool
If True, the connectivity matrix (or list) will be examined to
determine of it can be separated into disjoint sets. In some cases
(usually with connectivity as a list and many "time" points), this
can lead to faster clustering, but results should be identical.
buffer_size: int or None
The statistics will be computed for blocks of variables of size
"buffer_size" at a time. This is option significantly reduces the
memory requirements when n_jobs > 1 and memory sharing between
processes is enabled (see set_cache_dir()), as X will be shared
between processes and each process only needs to allocate space
for a small block of variables.
Returns
-------
T_obs : array of shape [n_tests]
T-statistic observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv: array
P-value for each cluster
H0 : array of shape [n_permutations]
Max cluster level stats observed under permutation.
Notes
-----
Reference:
Cluster permutation algorithm as described in
Maris/Oostenveld (2007),
"Nonparametric statistical testing of EEG- and MEG-data"
Journal of Neuroscience Methods, Vol. 164, No. 1., pp. 177-190.
doi:10.1016/j.jneumeth.2007.03.024
TFCE originally described in Smith/Nichols (2009),
"Threshold-free cluster enhancement: Addressing problems of
smoothing, threshold dependence, and localisation in cluster
inference", NeuroImage 44 (2009) 83-98.
"""
n_samples, n_times, n_vertices = X.shape
# convert spatial_exclude before passing on if necessary
if spatial_exclude is not None:
exclude = _st_mask_from_s_inds(n_times, n_vertices,
spatial_exclude, True)
else:
exclude = None
# do the heavy lifting
out = permutation_cluster_1samp_test(X, threshold=threshold,
stat_fun=stat_fun, tail=tail,
n_permutations=n_permutations,
connectivity=connectivity,
n_jobs=n_jobs, seed=seed,
max_step=max_step, exclude=exclude,
step_down_p=step_down_p,
t_power=t_power, out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size)
return out
spatio_temporal_cluster_1samp_test.__test__ = False
@verbose
def spatio_temporal_cluster_test(X, threshold=1.67, n_permutations=1024,
tail=0, stat_fun=f_oneway,
connectivity=None, verbose=None, n_jobs=1,
seed=None, max_step=1, spatial_exclude=None,
step_down_p=0, t_power=1, out_type='indices',
check_disjoint=False, buffer_size=1000):
"""Non-parametric cluster-level test for spatio-temporal data
This function provides a convenient wrapper for data organized in the form
(observations x time x space) to use permutation_cluster_test.
Parameters
----------
X: list of arrays
Array of shape (observations, time, vertices) in each group.
threshold: float
The threshold for the statistic.
n_permutations: int
See permutation_cluster_test.
tail : -1 or 0 or 1 (default = 0)
See permutation_cluster_test.
stat_fun : function
function called to calculate statistics, must accept 1d-arrays as
arguments (default: scipy.stats.f_oneway)
connectivity : sparse matrix or None
Defines connectivity between features. The matrix is assumed to
be symmetric and only the upper triangular half is used.
Default is None, i.e, a regular lattice connectivity.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
n_jobs : int
Number of permutations to run in parallel (requires joblib package).
seed : int or None
Seed the random number generator for results reproducibility.
max_step : int
When connectivity is a n_vertices x n_vertices matrix, specify the
maximum number of steps between vertices along the second dimension
(typically time) to be considered connected. This is not used for full
or None connectivity matrices.
spatial_exclude : list of int or None
List of spatial indices to exclude from clustering.
step_down_p : float
To perform a step-down-in-jumps test, pass a p-value for clusters to
exclude from each successive iteration. Default is zero, perform no
step-down test (since no clusters will be smaller than this value).
Setting this to a reasonable value, e.g. 0.05, can increase sensitivity
but costs computation time.
t_power : float
Power to raise the statistical values (usually f-values) by before
summing (sign will be retained). Note that t_power == 0 will give a
count of nodes in each cluster, t_power == 1 will weight each node by
its statistical score.
out_type : str
For arrays with connectivity, this sets the output format for clusters.
If 'mask', it will pass back a list of boolean mask arrays.
If 'indices', it will pass back a list of lists, where each list is the
set of vertices in a given cluster. Note that the latter may use far
less memory for large datasets.
check_disjoint : bool
If True, the connectivity matrix (or list) will be examined to
determine of it can be separated into disjoint sets. In some cases
(usually with connectivity as a list and many "time" points), this
can lead to faster clustering, but results should be identical.
buffer_size: int or None
The statistics will be computed for blocks of variables of size
"buffer_size" at a time. This is option significantly reduces the
memory requirements when n_jobs > 1 and memory sharing between
processes is enabled (see set_cache_dir()), as X will be shared
between processes and each process only needs to allocate space
for a small block of variables.
Returns
-------
T_obs : array of shape [n_tests]
T-statistic observed for all variables
clusters : list
List type defined by out_type above.
cluster_pv: array
P-value for each cluster
H0 : array of shape [n_permutations]
Max cluster level stats observed under permutation.
Notes
-----
Reference:
Cluster permutation algorithm as described in
Maris/Oostenveld (2007),
"Nonparametric statistical testing of EEG- and MEG-data"
Journal of Neuroscience Methods, Vol. 164, No. 1., pp. 177-190.
doi:10.1016/j.jneumeth.2007.03.024
"""
n_samples, n_times, n_vertices = X[0].shape
# convert spatial_exclude before passing on if necessary
if spatial_exclude is not None:
exclude = _st_mask_from_s_inds(n_times, n_vertices,
spatial_exclude, True)
else:
exclude = None
# do the heavy lifting
out = permutation_cluster_test(X, threshold=threshold,
stat_fun=stat_fun, tail=tail,
n_permutations=n_permutations,
connectivity=connectivity, n_jobs=n_jobs,
seed=seed, max_step=max_step,
exclude=exclude, step_down_p=step_down_p,
t_power=t_power, out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size)
return out
spatio_temporal_cluster_test.__test__ = False
def _st_mask_from_s_inds(n_times, n_vertices, vertices, set_as=True):
"""This function returns a boolean mask vector to apply to a spatio-
temporal connectivity matrix (n_times * n_vertices square) to include (or
exclude) certain spatial coordinates. This is useful for excluding certain
regions from analysis (e.g., medial wall vertices).
Parameters
----------
n_times : int
Number of time points.
n_vertices : int
Number of spatial points.
vertices : list or array of int
Vertex numbers to set.
set_as : bool
If True, all points except "vertices" are set to False (inclusion).
If False, all points except "vertices" are set to True (exclusion).
Returns
-------
mask : array of bool
A (n_times * n_vertices) array of boolean values for masking
"""
mask = np.zeros((n_times, n_vertices), dtype=bool)
mask[:, vertices] = True
mask = mask.ravel()
if set_as is False:
mask = np.logical_not(mask)
return mask
@verbose
def _get_partitions_from_connectivity(connectivity, n_times, verbose=None):
"""Use indices to specify disjoint subsets (e.g., hemispheres) based on
connectivity"""
if isinstance(connectivity, list):
test = np.ones(len(connectivity))
test_conn = np.zeros((len(connectivity), len(connectivity)),
dtype='bool')
for vi in range(len(connectivity)):
test_conn[connectivity[vi], vi] = True
test_conn = sparse.coo_matrix(test_conn, dtype='float')
else:
test = np.ones(connectivity.shape[0])
test_conn = connectivity
part_clusts = _find_clusters(test, 0, 1, test_conn)[0]
if len(part_clusts) > 1:
logger.info('%i disjoint connectivity sets found'
% len(part_clusts))
partitions = np.zeros(len(test), dtype='int')
for ii, pc in enumerate(part_clusts):
partitions[pc] = ii
if isinstance(connectivity, list):
partitions = np.tile(partitions, n_times)
else:
logger.info('No disjoint connectivity sets found')
partitions = None
return partitions
def _reshape_clusters(clusters, sample_shape):
"""Reshape cluster masks or indices to be of the correct shape"""
# format of the bool mask and indices are ndarrays
if len(clusters) > 0 and isinstance(clusters[0], np.ndarray):
if clusters[0].dtype == bool: # format of mask
clusters = [c.reshape(sample_shape) for c in clusters]
else: # format of indices
clusters = [np.unravel_index(c, sample_shape) for c in clusters]
return clusters
def summarize_clusters_stc(clu, p_thresh=0.05, tstep=1e-3, tmin=0,
subject='fsaverage', vertices=None):
""" Assemble summary SourceEstimate from spatiotemporal cluster results
This helps visualizing results from spatio-temporal-clustering
permutation tests
Parameters
----------
clu : tuple
the output from clustering permutation tests.
p_thresh : float
The significance threshold for inclusion of clusters.
tstep : float
The temporal difference between two time samples.
tmin : float | int
The time of the first sample.
subject : str
The name of the subject.
vertices : list of arrays | None
The vertex numbers associated with the source space locations. Defaults
to None. If None, equals ```[np.arange(10242), np.arange(10242)]```.
Returns
-------
out : instance of SourceEstimate
A summary of the clusters. The first time point in this SourceEstimate
object is the summation of all the clusters. Subsequent time points
contain each individual cluster. The magnitude of the activity
corresponds to the length the cluster spans in time (in samples).
"""
if vertices is None:
vertices = [np.arange(10242), np.arange(10242)]
T_obs, clusters, clu_pvals, _ = clu
n_times, n_vertices = T_obs.shape
good_cluster_inds = np.where(clu_pvals < p_thresh)[0]
# Build a convenient representation of each cluster, where each
# cluster becomes a "time point" in the SourceEstimate
if len(good_cluster_inds) > 0:
data = np.zeros((n_vertices, n_times))
data_summary = np.zeros((n_vertices, len(good_cluster_inds) + 1))
for ii, cluster_ind in enumerate(good_cluster_inds):
data.fill(0)
v_inds = clusters[cluster_ind][1]
t_inds = clusters[cluster_ind][0]
data[v_inds, t_inds] = T_obs[t_inds, v_inds]
# Store a nice visualization of the cluster by summing across time
data = np.sign(data) * np.logical_not(data == 0) * tstep
data_summary[:, ii + 1] = 1e3 * np.sum(data, axis=1)
# Make the first "time point" a sum across all clusters for easy
# visualization
data_summary[:, 0] = np.sum(data_summary, axis=1)
return SourceEstimate(data_summary, vertices, tmin=tmin, tstep=tstep,
subject=subject)
else:
raise RuntimeError('No significant clusters available. Please adjust '
'your threshold or check your statistical '
'analysis.')
|