File: multi_comp.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (102 lines) | stat: -rw-r--r-- 3,035 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Authors: Josef Pktd and example from H Raja and rewrite from Vincent Davis
#          Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# Code borrowed from statsmodels
#
# License: BSD (3-clause)

import numpy as np


def _ecdf(x):
    '''no frills empirical cdf used in fdrcorrection
    '''
    nobs = len(x)
    return np.arange(1, nobs + 1) / float(nobs)


def fdr_correction(pvals, alpha=0.05, method='indep'):
    """P-value correction with False Discovery Rate (FDR)

    Correction for multiple comparison using FDR.

    This covers Benjamini/Hochberg for independent or positively correlated and
    Benjamini/Yekutieli for general or negatively correlated tests.

    Parameters
    ----------
    pvals : array_like
        set of p-values of the individual tests.
    alpha : float
        error rate
    method : 'indep' | 'negcorr'
        If 'indep' it implements Benjamini/Hochberg for independent or if
        'negcorr' it corresponds to Benjamini/Yekutieli.

    Returns
    -------
    reject : array, bool
        True if a hypothesis is rejected, False if not
    pval_corrected : array
        pvalues adjusted for multiple hypothesis testing to limit FDR

    Notes
    -----
    Reference:
    Genovese CR, Lazar NA, Nichols T.
    Thresholding of statistical maps in functional neuroimaging using the false
    discovery rate. Neuroimage. 2002 Apr;15(4):870-8.
    """
    pvals = np.asarray(pvals)
    shape_init = pvals.shape
    pvals = pvals.ravel()

    pvals_sortind = np.argsort(pvals)
    pvals_sorted = pvals[pvals_sortind]
    sortrevind = pvals_sortind.argsort()

    if method in ['i', 'indep', 'p', 'poscorr']:
        ecdffactor = _ecdf(pvals_sorted)
    elif method in ['n', 'negcorr']:
        cm = np.sum(1. / np.arange(1, len(pvals_sorted) + 1))
        ecdffactor = _ecdf(pvals_sorted) / cm
    else:
        raise ValueError("Method should be 'indep' and 'negcorr'")

    reject = pvals_sorted < (ecdffactor * alpha)
    if reject.any():
        rejectmax = max(np.nonzero(reject)[0])
    else:
        rejectmax = 0
    reject[:rejectmax] = True

    pvals_corrected_raw = pvals_sorted / ecdffactor
    pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1]
    pvals_corrected[pvals_corrected > 1.0] = 1.0
    pvals_corrected = pvals_corrected[sortrevind].reshape(shape_init)
    reject = reject[sortrevind].reshape(shape_init)
    return reject, pvals_corrected


def bonferroni_correction(pval, alpha=0.05):
    """P-value correction with Bonferroni method

    Parameters
    ----------
    pval : array_like
        set of p-values of the individual tests.
    alpha : float
        error rate

    Returns
    -------
    reject : array, bool
        True if a hypothesis is rejected, False if not
    pval_corrected : array
        pvalues adjusted for multiple hypothesis testing to limit FDR

    """
    pval = np.asarray(pval)
    pval_corrected = pval * float(pval.size)
    reject = pval_corrected < alpha
    return reject, pval_corrected