File: test_regression.py

package info (click to toggle)
python-mne 0.13.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 92,032 kB
  • ctags: 8,249
  • sloc: python: 84,750; makefile: 205; sh: 15
file content (137 lines) | stat: -rw-r--r-- 5,150 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Authors: Teon Brooks <teon.brooks@gmail.com>
#          Denis A. Engemann <denis.engemann@gmail.com>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
import warnings

import numpy as np
from numpy.testing import assert_array_equal, assert_allclose

from scipy.signal import hann

from nose.tools import assert_raises, assert_true, assert_equal

import mne
from mne import read_source_estimate
from mne.datasets import testing
from mne.stats.regression import linear_regression, linear_regression_raw
from mne.io import RawArray

warnings.simplefilter('always')

data_path = testing.data_path(download=False)
stc_fname = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-lh.stc')
raw_fname = data_path + '/MEG/sample/sample_audvis_trunc_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_trunc_raw-eve.fif'


@testing.requires_testing_data
def test_regression():
    """Test Ordinary Least Squares Regression."""
    tmin, tmax = -0.2, 0.5
    event_id = dict(aud_l=1, aud_r=2)

    # Setup for reading the raw data
    raw = mne.io.read_raw_fif(raw_fname, add_eeg_ref=False)
    events = mne.read_events(event_fname)[:10]
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        baseline=(None, 0), add_eeg_ref=False)
    picks = np.arange(len(epochs.ch_names))
    evoked = epochs.average(picks=picks)
    design_matrix = epochs.events[:, 1:].astype(np.float64)
    # makes the intercept
    design_matrix[:, 0] = 1
    # creates contrast: aud_l=0, aud_r=1
    design_matrix[:, 1] -= 1
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')
        lm = linear_regression(epochs, design_matrix, ['intercept', 'aud'])
        assert_true(w[0].category == RuntimeWarning)
        assert_true('non-data' in '%s' % w[0].message)

    for predictor, parameters in lm.items():
        for value in parameters:
            assert_equal(value.data.shape, evoked.data.shape)

    assert_raises(ValueError, linear_regression, [epochs, epochs],
                  design_matrix)

    stc = read_source_estimate(stc_fname).crop(0, 0.02)
    stc_list = [stc, stc, stc]
    stc_gen = (s for s in stc_list)
    with warnings.catch_warnings(record=True):  # divide by zero
        warnings.simplefilter('always')
        lm1 = linear_regression(stc_list, design_matrix[:len(stc_list)])
    lm2 = linear_regression(stc_gen, design_matrix[:len(stc_list)])
    for val in lm2.values():
        # all p values are 0 < p <= 1 to start, but get stored in float32
        # data, so can actually be truncated to 0. Thus the mlog10_p_val
        # actually maintains better precision for tiny p-values.
        assert_true(np.isfinite(val.p_val.data).all())
        assert_true((val.p_val.data <= 1).all())
        assert_true((val.p_val.data >= 0).all())
        # all -log10(p) are non-negative
        assert_true(np.isfinite(val.mlog10_p_val.data).all())
        assert_true((val.mlog10_p_val.data >= 0).all())
        assert_true((val.mlog10_p_val.data >= 0).all())

    for k in lm1:
        for v1, v2 in zip(lm1[k], lm2[k]):
            assert_array_equal(v1.data, v2.data)


@testing.requires_testing_data
def test_continuous_regression_no_overlap():
    """Test regression without overlap correction, on real data."""
    tmin, tmax = -.1, .5

    raw = mne.io.read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)
    raw.apply_proj()
    events = mne.read_events(event_fname)
    event_id = dict(audio_l=1, audio_r=2)

    raw = raw.pick_channels(raw.ch_names[:2])

    epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
                        baseline=None, reject=None, add_eeg_ref=False)

    revokeds = linear_regression_raw(raw, events, event_id,
                                     tmin=tmin, tmax=tmax,
                                     reject=None)

    # Check that evokeds and revokeds are nearly equivalent
    for cond in event_id.keys():
        assert_allclose(revokeds[cond].data,
                        epochs[cond].average().data, rtol=1e-15)

    # Test events that will lead to "duplicate" errors
    old_latency = events[1, 0]
    events[1, 0] = events[0, 0]
    assert_raises(ValueError, linear_regression_raw,
                  raw, events, event_id, tmin, tmax)

    events[1, 0] = old_latency
    events[:, 0] = range(len(events))
    assert_raises(ValueError, linear_regression_raw, raw,
                  events, event_id, tmin, tmax, decim=2)


def test_continuous_regression_with_overlap():
    """Test regression with overlap correction."""
    signal = np.zeros(100000)
    times = [1000, 2500, 3000, 5000, 5250, 7000, 7250, 8000]
    events = np.zeros((len(times), 3), int)
    events[:, 2] = 1
    events[:, 0] = times
    signal[events[:, 0]] = 1.
    effect = hann(101)
    signal = np.convolve(signal, effect)[:len(signal)]
    raw = RawArray(signal[np.newaxis, :], mne.create_info(1, 100, 'eeg'))

    assert_allclose(effect,
                    linear_regression_raw(raw, events, {1: 1}, tmin=0)[1]
                    .data.flatten())