1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
from glob import glob
import os
from nose.tools import assert_raises, assert_true
import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_less
import mne
from mne.transforms import apply_trans, rotation, translation, scaling
from mne.coreg import (fit_matched_points, fit_point_cloud,
_point_cloud_error, _decimate_points,
create_default_subject, scale_mri,
_is_mri_subject, scale_labels, scale_source_space)
from mne.utils import (requires_mne, requires_freesurfer, _TempDir,
run_tests_if_main, requires_version)
from functools import reduce
@requires_mne
@requires_freesurfer
@requires_version('scipy', '0.11')
def test_scale_mri():
"""Test creating fsaverage and scaling it"""
# create fsaverage
tempdir = _TempDir()
create_default_subject(subjects_dir=tempdir)
is_mri = _is_mri_subject('fsaverage', tempdir)
assert_true(is_mri, "Creating fsaverage failed")
fid_path = os.path.join(tempdir, 'fsaverage', 'bem',
'fsaverage-fiducials.fif')
os.remove(fid_path)
create_default_subject(update=True, subjects_dir=tempdir)
assert_true(os.path.exists(fid_path), "Updating fsaverage")
# remove redundant label files
label_temp = os.path.join(tempdir, 'fsaverage', 'label', '*.label')
label_paths = glob(label_temp)
for label_path in label_paths[1:]:
os.remove(label_path)
# create source space
path = os.path.join(tempdir, 'fsaverage', 'bem', 'fsaverage-ico-0-src.fif')
mne.setup_source_space('fsaverage', path, 'ico0', overwrite=True,
subjects_dir=tempdir, add_dist=False)
# scale fsaverage
os.environ['_MNE_FEW_SURFACES'] = 'true'
scale_mri('fsaverage', 'flachkopf', [1, .2, .8], True,
subjects_dir=tempdir)
del os.environ['_MNE_FEW_SURFACES']
is_mri = _is_mri_subject('flachkopf', tempdir)
assert_true(is_mri, "Scaling fsaverage failed")
src_path = os.path.join(tempdir, 'flachkopf', 'bem',
'flachkopf-ico-0-src.fif')
assert_true(os.path.exists(src_path), "Source space was not scaled")
scale_labels('flachkopf', subjects_dir=tempdir)
# scale source space separately
os.remove(src_path)
scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
assert_true(os.path.exists(src_path), "Source space was not scaled")
# add distances to source space
src = mne.read_source_spaces(path)
mne.add_source_space_distances(src)
src.save(path)
# scale with distances
os.remove(src_path)
scale_source_space('flachkopf', 'ico-0', subjects_dir=tempdir)
def test_fit_matched_points():
"""Test fit_matched_points: fitting two matching sets of points"""
tgt_pts = np.random.RandomState(42).uniform(size=(6, 3))
# rotation only
trans = rotation(2, 6, 3)
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, translate=False,
out='trans')
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
"rotation")
# rotation & scaling
trans = np.dot(rotation(2, 6, 3), scaling(.5, .5, .5))
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, translate=False, scale=1,
out='trans')
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
"rotation and scaling.")
# rotation & translation
trans = np.dot(translation(2, -6, 3), rotation(2, 6, 3))
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, out='trans')
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
"rotation and translation.")
# rotation & translation & scaling
trans = reduce(np.dot, (translation(2, -6, 3), rotation(1.5, .3, 1.4),
scaling(.5, .5, .5)))
src_pts = apply_trans(trans, tgt_pts)
trans_est = fit_matched_points(src_pts, tgt_pts, scale=1, out='trans')
est_pts = apply_trans(trans_est, src_pts)
assert_array_almost_equal(tgt_pts, est_pts, 2, "fit_matched_points with "
"rotation, translation and scaling.")
# test exceeding tolerance
tgt_pts[0, :] += 20
assert_raises(RuntimeError, fit_matched_points, tgt_pts, src_pts, tol=10)
def test_fit_point_cloud():
"""Test fit_point_cloud: fitting a set of points to a point cloud"""
# evenly spaced target points on a sphere
u = np.linspace(0, np.pi, 150)
v = np.linspace(0, np.pi, 150)
x = np.outer(np.cos(u), np.sin(v)).reshape((-1, 1))
y = np.outer(np.sin(u), np.sin(v)).reshape((-1, 1))
z = np.outer(np.ones(np.size(u)), np.cos(v)).reshape((-1, 1)) * 3
tgt_pts = np.hstack((x, y, z))
tgt_pts = _decimate_points(tgt_pts, .05)
# pick some points to fit
some_tgt_pts = tgt_pts[::362]
# rotation only
trans = rotation(1.5, .3, -0.4)
src_pts = apply_trans(trans, some_tgt_pts)
trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=False,
scale=0, out='trans')
est_pts = apply_trans(trans_est, src_pts)
err = _point_cloud_error(est_pts, tgt_pts)
assert_array_less(err, .1, "fit_point_cloud with rotation.")
# rotation and translation
trans = np.dot(rotation(0.5, .3, -0.4), translation(.3, .2, -.2))
src_pts = apply_trans(trans, some_tgt_pts)
trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=True,
scale=0, out='trans')
est_pts = apply_trans(trans_est, src_pts)
err = _point_cloud_error(est_pts, tgt_pts)
assert_array_less(err, .1, "fit_point_cloud with rotation and "
"translation.")
# rotation and 1 scale parameter
trans = np.dot(rotation(0.5, .3, -0.4), scaling(1.5, 1.5, 1.5))
src_pts = apply_trans(trans, some_tgt_pts)
trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=False,
scale=1, out='trans')
est_pts = apply_trans(trans_est, src_pts)
err = _point_cloud_error(est_pts, tgt_pts)
assert_array_less(err, .1, "fit_point_cloud with rotation and 1 scaling "
"parameter.")
# rotation and 3 scale parameter
trans = np.dot(rotation(0.5, .3, -0.4), scaling(1.5, 1.7, 1.1))
src_pts = apply_trans(trans, some_tgt_pts)
trans_est = fit_point_cloud(src_pts, tgt_pts, rotate=True, translate=False,
scale=3, out='trans')
est_pts = apply_trans(trans_est, src_pts)
err = _point_cloud_error(est_pts, tgt_pts)
assert_array_less(err, .1, "fit_point_cloud with rotation and 3 scaling "
"parameters.")
run_tests_if_main()
|