1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
from nose.tools import assert_true
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal)
from nose.tools import assert_raises
import numpy as np
from scipy import linalg
import warnings
import itertools as itt
from mne.cov import (regularize, whiten_evoked, _estimate_rank_meeg_cov,
_auto_low_rank_model, _apply_scaling_cov,
_undo_scaling_cov, prepare_noise_cov)
from mne import (read_cov, write_cov, Epochs, merge_events,
find_events, compute_raw_covariance,
compute_covariance, read_evokeds, compute_proj_raw,
pick_channels_cov, pick_channels, pick_types, pick_info,
make_ad_hoc_cov)
from mne.io import read_raw_fif, RawArray, read_info
from mne.tests.common import assert_naming, assert_snr
from mne.utils import (_TempDir, slow_test, requires_sklearn_0_15,
run_tests_if_main)
from mne.io.proc_history import _get_sss_rank
from mne.io.pick import channel_type, _picks_by_type
warnings.simplefilter('always') # enable b/c these tests throw warnings
base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
cov_fname = op.join(base_dir, 'test-cov.fif')
cov_gz_fname = op.join(base_dir, 'test-cov.fif.gz')
cov_km_fname = op.join(base_dir, 'test-km-cov.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
ave_fname = op.join(base_dir, 'test-ave.fif')
erm_cov_fname = op.join(base_dir, 'test_erm-cov.fif')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')
def test_cov_mismatch():
"""Test estimation with MEG<->Head mismatch."""
raw = read_raw_fif(raw_fname, add_eeg_ref=False).crop(0, 5).load_data()
events = find_events(raw, stim_channel='STI 014')
raw.pick_channels(raw.ch_names[:5])
raw.add_proj([], remove_existing=True)
epochs = Epochs(raw, events, None, tmin=-0.2, tmax=0., preload=True,
add_eeg_ref=False)
for kind in ('shift', 'None'):
epochs_2 = epochs.copy()
# This should be fine
with warnings.catch_warnings(record=True) as w:
compute_covariance([epochs, epochs_2])
assert_equal(len(w), 0)
if kind == 'shift':
epochs_2.info['dev_head_t']['trans'][:3, 3] += 0.001
else: # None
epochs_2.info['dev_head_t'] = None
assert_raises(ValueError, compute_covariance, [epochs, epochs_2])
assert_equal(len(w), 0)
compute_covariance([epochs, epochs_2], on_mismatch='ignore')
assert_equal(len(w), 0)
compute_covariance([epochs, epochs_2], on_mismatch='warn')
assert_raises(ValueError, compute_covariance, epochs,
on_mismatch='x')
assert_true(any('transform mismatch' in str(ww.message) for ww in w))
# This should work
epochs.info['dev_head_t'] = None
epochs_2.info['dev_head_t'] = None
compute_covariance([epochs, epochs_2], method=None)
def test_cov_order():
"""Test covariance ordering."""
info = read_info(raw_fname)
# add MEG channel with low enough index number to affect EEG if
# order is incorrect
info['bads'] += ['MEG 0113']
ch_names = [info['ch_names'][pick]
for pick in pick_types(info, meg=False, eeg=True)]
cov = read_cov(cov_fname)
# no avg ref present warning
prepare_noise_cov(cov, info, ch_names, verbose='error')
def test_ad_hoc_cov():
"""Test ad hoc cov creation and I/O."""
tempdir = _TempDir()
out_fname = op.join(tempdir, 'test-cov.fif')
evoked = read_evokeds(ave_fname)[0]
cov = make_ad_hoc_cov(evoked.info)
cov.save(out_fname)
assert_true('Covariance' in repr(cov))
cov2 = read_cov(out_fname)
assert_array_almost_equal(cov['data'], cov2['data'])
def test_io_cov():
"""Test IO for noise covariance matrices."""
tempdir = _TempDir()
cov = read_cov(cov_fname)
cov['method'] = 'empirical'
cov['loglik'] = -np.inf
cov.save(op.join(tempdir, 'test-cov.fif'))
cov2 = read_cov(op.join(tempdir, 'test-cov.fif'))
assert_array_almost_equal(cov.data, cov2.data)
assert_equal(cov['method'], cov2['method'])
assert_equal(cov['loglik'], cov2['loglik'])
assert_true('Covariance' in repr(cov))
cov2 = read_cov(cov_gz_fname)
assert_array_almost_equal(cov.data, cov2.data)
cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
assert_array_almost_equal(cov.data, cov2.data)
cov['bads'] = ['EEG 039']
cov_sel = pick_channels_cov(cov, exclude=cov['bads'])
assert_true(cov_sel['dim'] == (len(cov['data']) - len(cov['bads'])))
assert_true(cov_sel['data'].shape == (cov_sel['dim'], cov_sel['dim']))
cov_sel.save(op.join(tempdir, 'test-cov.fif'))
cov2 = read_cov(cov_gz_fname)
assert_array_almost_equal(cov.data, cov2.data)
cov2.save(op.join(tempdir, 'test-cov.fif.gz'))
cov2 = read_cov(op.join(tempdir, 'test-cov.fif.gz'))
assert_array_almost_equal(cov.data, cov2.data)
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
cov_badname = op.join(tempdir, 'test-bad-name.fif.gz')
write_cov(cov_badname, cov)
read_cov(cov_badname)
assert_naming(w, 'test_cov.py', 2)
def test_cov_estimation_on_raw():
"""Test estimation from raw (typically empty room)."""
tempdir = _TempDir()
raw = read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)
cov_mne = read_cov(erm_cov_fname)
# The pure-string uses the more efficient numpy-based method, the
# the list gets triaged to compute_covariance (should be equivalent
# but use more memory)
for method in (None, ['empirical']): # None is cast to 'empirical'
cov = compute_raw_covariance(raw, tstep=None, method=method)
assert_equal(cov.ch_names, cov_mne.ch_names)
assert_equal(cov.nfree, cov_mne.nfree)
assert_snr(cov.data, cov_mne.data, 1e4)
cov = compute_raw_covariance(raw, method=method) # tstep=0.2 (default)
assert_equal(cov.nfree, cov_mne.nfree - 119) # cutoff some samples
assert_snr(cov.data, cov_mne.data, 1e2)
# test IO when computation done in Python
cov.save(op.join(tempdir, 'test-cov.fif')) # test saving
cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
assert_true(cov_read.ch_names == cov.ch_names)
assert_true(cov_read.nfree == cov.nfree)
assert_array_almost_equal(cov.data, cov_read.data)
# test with a subset of channels
picks = pick_channels(raw.ch_names, include=raw.ch_names[:5])
raw_pick = raw.copy().pick_channels(
[raw.ch_names[pick] for pick in picks])
raw_pick.info.normalize_proj()
cov = compute_raw_covariance(raw_pick, picks=picks, tstep=None,
method=method)
assert_true(cov_mne.ch_names[:5] == cov.ch_names)
assert_snr(cov.data, cov_mne.data[picks][:, picks], 1e4)
cov = compute_raw_covariance(raw_pick, picks=picks, method=method)
assert_snr(cov.data, cov_mne.data[picks][:, picks], 90) # cutoff samps
# make sure we get a warning with too short a segment
raw_2 = read_raw_fif(raw_fname,
add_eeg_ref=False).crop(0, 1, copy=False)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
cov = compute_raw_covariance(raw_2, method=method)
assert_true(any('Too few samples' in str(ww.message) for ww in w))
# no epochs found due to rejection
assert_raises(ValueError, compute_raw_covariance, raw, tstep=None,
method='empirical', reject=dict(eog=200e-6))
# but this should work
cov = compute_raw_covariance(raw.copy().crop(0, 10., copy=False),
tstep=None, method=method,
reject=dict(eog=1000e-6))
@slow_test
@requires_sklearn_0_15
def test_cov_estimation_on_raw_reg():
"""Test estimation from raw with regularization."""
raw = read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)
raw.info['sfreq'] /= 10.
raw = RawArray(raw._data[:, ::10].copy(), raw.info) # decimate for speed
cov_mne = read_cov(erm_cov_fname)
with warnings.catch_warnings(record=True): # too few samples
warnings.simplefilter('always')
# XXX don't use "shrunk" here, for some reason it makes Travis 2.7
# hang... "diagonal_fixed" is much faster. Use long epochs for speed.
cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed')
assert_snr(cov.data, cov_mne.data, 5)
@slow_test
def test_cov_estimation_with_triggers():
"""Test estimation from raw with triggers."""
tempdir = _TempDir()
raw = read_raw_fif(raw_fname, preload=False, add_eeg_ref=False)
raw.set_eeg_reference()
events = find_events(raw, stim_channel='STI 014')
event_ids = [1, 2, 3, 4]
reject = dict(grad=10000e-13, mag=4e-12, eeg=80e-6, eog=150e-6)
# cov with merged events and keep_sample_mean=True
events_merged = merge_events(events, event_ids, 1234)
epochs = Epochs(raw, events_merged, 1234, tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True,
reject=reject, preload=True, add_eeg_ref=False)
cov = compute_covariance(epochs, keep_sample_mean=True)
cov_mne = read_cov(cov_km_fname)
assert_true(cov_mne.ch_names == cov.ch_names)
assert_true((linalg.norm(cov.data - cov_mne.data, ord='fro') /
linalg.norm(cov.data, ord='fro')) < 0.005)
# Test with tmin and tmax (different but not too much)
cov_tmin_tmax = compute_covariance(epochs, tmin=-0.19, tmax=-0.01)
assert_true(np.all(cov.data != cov_tmin_tmax.data))
assert_true((linalg.norm(cov.data - cov_tmin_tmax.data, ord='fro') /
linalg.norm(cov_tmin_tmax.data, ord='fro')) < 0.05)
# cov using a list of epochs and keep_sample_mean=True
epochs = [Epochs(raw, events, ev_id, tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True, reject=reject,
add_eeg_ref=False)
for ev_id in event_ids]
cov2 = compute_covariance(epochs, keep_sample_mean=True)
assert_array_almost_equal(cov.data, cov2.data)
assert_true(cov.ch_names == cov2.ch_names)
# cov with keep_sample_mean=False using a list of epochs
cov = compute_covariance(epochs, keep_sample_mean=False)
cov_mne = read_cov(cov_fname)
assert_true(cov_mne.ch_names == cov.ch_names)
assert_true((linalg.norm(cov.data - cov_mne.data, ord='fro') /
linalg.norm(cov.data, ord='fro')) < 0.005)
method_params = {'empirical': {'assume_centered': False}}
assert_raises(ValueError, compute_covariance, epochs,
keep_sample_mean=False, method_params=method_params)
assert_raises(ValueError, compute_covariance, epochs,
keep_sample_mean=False, method='factor_analysis')
# test IO when computation done in Python
cov.save(op.join(tempdir, 'test-cov.fif')) # test saving
cov_read = read_cov(op.join(tempdir, 'test-cov.fif'))
assert_true(cov_read.ch_names == cov.ch_names)
assert_true(cov_read.nfree == cov.nfree)
assert_true((linalg.norm(cov.data - cov_read.data, ord='fro') /
linalg.norm(cov.data, ord='fro')) < 1e-5)
# cov with list of epochs with different projectors
epochs = [Epochs(raw, events[:4], event_ids[0], tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True, reject=reject,
add_eeg_ref=False),
Epochs(raw, events[:4], event_ids[0], tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=False, reject=reject,
add_eeg_ref=False)]
# these should fail
assert_raises(ValueError, compute_covariance, epochs)
assert_raises(ValueError, compute_covariance, epochs, projs=None)
# these should work, but won't be equal to above
with warnings.catch_warnings(record=True) as w: # too few samples warning
warnings.simplefilter('always')
cov = compute_covariance(epochs, projs=epochs[0].info['projs'])
cov = compute_covariance(epochs, projs=[])
assert_true(len(w) == 2)
# test new dict support
epochs = Epochs(raw, events, dict(a=1, b=2, c=3, d=4), tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True, reject=reject,
add_eeg_ref=False)
compute_covariance(epochs)
def test_arithmetic_cov():
"""Test arithmetic with noise covariance matrices."""
cov = read_cov(cov_fname)
cov_sum = cov + cov
assert_array_almost_equal(2 * cov.nfree, cov_sum.nfree)
assert_array_almost_equal(2 * cov.data, cov_sum.data)
assert_true(cov.ch_names == cov_sum.ch_names)
cov += cov
assert_array_almost_equal(cov_sum.nfree, cov.nfree)
assert_array_almost_equal(cov_sum.data, cov.data)
assert_true(cov_sum.ch_names == cov.ch_names)
def test_regularize_cov():
"""Test cov regularization."""
raw = read_raw_fif(raw_fname, preload=False, add_eeg_ref=False)
raw.info['bads'].append(raw.ch_names[0]) # test with bad channels
noise_cov = read_cov(cov_fname)
# Regularize noise cov
reg_noise_cov = regularize(noise_cov, raw.info,
mag=0.1, grad=0.1, eeg=0.1, proj=True,
exclude='bads')
assert_true(noise_cov['dim'] == reg_noise_cov['dim'])
assert_true(noise_cov['data'].shape == reg_noise_cov['data'].shape)
assert_true(np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08)
def test_whiten_evoked():
"""Test whitening of evoked data."""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
proj=True)
cov = read_cov(cov_fname)
###########################################################################
# Show result
picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1,
exclude='bads')
evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True)
whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0]
mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1)
assert_true(np.all(mean_baseline < 1.))
assert_true(np.all(mean_baseline > 0.2))
# degenerate
cov_bad = pick_channels_cov(cov, include=evoked.ch_names[:10])
assert_raises(RuntimeError, whiten_evoked, evoked, cov_bad, picks)
@slow_test
def test_rank():
"""Test cov rank estimation."""
# Test that our rank estimation works properly on a simple case
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
proj=False)
cov = read_cov(cov_fname)
ch_names = [ch for ch in evoked.info['ch_names'] if '053' not in ch and
ch.startswith('EEG')]
cov = prepare_noise_cov(cov, evoked.info, ch_names, None)
assert_equal(cov['eig'][0], 0.) # avg projector should set this to zero
assert_true((cov['eig'][1:] > 0).all()) # all else should be > 0
# Now do some more comprehensive tests
raw_sample = read_raw_fif(raw_fname, add_eeg_ref=False)
raw_sss = read_raw_fif(hp_fif_fname, add_eeg_ref=False)
raw_sss.add_proj(compute_proj_raw(raw_sss))
cov_sample = compute_raw_covariance(raw_sample)
cov_sample_proj = compute_raw_covariance(
raw_sample.copy().apply_proj())
cov_sss = compute_raw_covariance(raw_sss)
cov_sss_proj = compute_raw_covariance(
raw_sss.copy().apply_proj())
picks_all_sample = pick_types(raw_sample.info, meg=True, eeg=True)
picks_all_sss = pick_types(raw_sss.info, meg=True, eeg=True)
info_sample = pick_info(raw_sample.info, picks_all_sample)
picks_stack_sample = [('eeg', pick_types(info_sample, meg=False,
eeg=True))]
picks_stack_sample += [('meg', pick_types(info_sample, meg=True))]
picks_stack_sample += [('all',
pick_types(info_sample, meg=True, eeg=True))]
info_sss = pick_info(raw_sss.info, picks_all_sss)
picks_stack_somato = [('eeg', pick_types(info_sss, meg=False, eeg=True))]
picks_stack_somato += [('meg', pick_types(info_sss, meg=True))]
picks_stack_somato += [('all',
pick_types(info_sss, meg=True, eeg=True))]
iter_tests = list(itt.product(
[(cov_sample, picks_stack_sample, info_sample),
(cov_sample_proj, picks_stack_sample, info_sample),
(cov_sss, picks_stack_somato, info_sss),
(cov_sss_proj, picks_stack_somato, info_sss)], # sss
[dict(mag=1e15, grad=1e13, eeg=1e6)]
))
for (cov, picks_list, this_info), scalings in iter_tests:
for ch_type, picks in picks_list:
this_very_info = pick_info(this_info, picks)
# compute subset of projs
this_projs = [c['active'] and
len(set(c['data']['col_names'])
.intersection(set(this_very_info['ch_names']))) >
0 for c in cov['projs']]
n_projs = sum(this_projs)
# count channel types
ch_types = [channel_type(this_very_info, idx)
for idx in range(len(picks))]
n_eeg, n_mag, n_grad = [ch_types.count(k) for k in
['eeg', 'mag', 'grad']]
n_meg = n_mag + n_grad
if ch_type in ('all', 'eeg'):
n_projs_eeg = 1
else:
n_projs_eeg = 0
# check sss
if 'proc_history' in this_very_info:
mf = this_very_info['proc_history'][0]['max_info']
n_free = _get_sss_rank(mf)
if 'mag' not in ch_types and 'grad' not in ch_types:
n_free = 0
# - n_projs XXX clarify
expected_rank = n_free + n_eeg
if n_projs > 0 and ch_type in ('all', 'eeg'):
expected_rank -= n_projs_eeg
else:
expected_rank = n_meg + n_eeg - n_projs
C = cov['data'][np.ix_(picks, picks)]
est_rank = _estimate_rank_meeg_cov(C, this_very_info,
scalings=scalings)
assert_equal(expected_rank, est_rank)
def test_cov_scaling():
"""Test rescaling covs"""
evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
proj=True)
cov = read_cov(cov_fname)['data']
cov2 = read_cov(cov_fname)['data']
assert_array_equal(cov, cov2)
evoked.pick_channels([evoked.ch_names[k] for k in pick_types(
evoked.info, meg=True, eeg=True
)])
picks_list = _picks_by_type(evoked.info)
scalings = dict(mag=1e15, grad=1e13, eeg=1e6)
_apply_scaling_cov(cov2, picks_list, scalings=scalings)
_apply_scaling_cov(cov, picks_list, scalings=scalings)
assert_array_equal(cov, cov2)
assert_true(cov.max() > 1)
_undo_scaling_cov(cov2, picks_list, scalings=scalings)
_undo_scaling_cov(cov, picks_list, scalings=scalings)
assert_array_equal(cov, cov2)
assert_true(cov.max() < 1)
@requires_sklearn_0_15
def test_auto_low_rank():
"""Test probabilistic low rank estimators."""
n_samples, n_features, rank = 400, 20, 10
sigma = 0.1
def get_data(n_samples, n_features, rank, sigma):
rng = np.random.RandomState(42)
W = rng.randn(n_features, n_features)
X = rng.randn(n_samples, rank)
U, _, _ = linalg.svd(W.copy())
X = np.dot(X, U[:, :rank].T)
sigmas = sigma * rng.rand(n_features) + sigma / 2.
X += rng.randn(n_samples, n_features) * sigmas
return X
X = get_data(n_samples=n_samples, n_features=n_features, rank=rank,
sigma=sigma)
method_params = {'iter_n_components': [9, 10, 11]}
cv = 3
n_jobs = 1
mode = 'factor_analysis'
rescale = 1e8
X *= rescale
est, info = _auto_low_rank_model(X, mode=mode, n_jobs=n_jobs,
method_params=method_params,
cv=cv)
assert_equal(info['best'], rank)
X = get_data(n_samples=n_samples, n_features=n_features, rank=rank,
sigma=sigma)
method_params = {'iter_n_components': [n_features + 5]}
msg = ('You are trying to estimate %i components on matrix '
'with %i features.')
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
_auto_low_rank_model(X, mode=mode, n_jobs=n_jobs,
method_params=method_params, cv=cv)
assert_equal(len(w), 1)
assert_equal(msg % (n_features + 5, n_features), '%s' % w[0].message)
method_params = {'iter_n_components': [n_features + 5]}
assert_raises(ValueError, _auto_low_rank_model, X, mode='foo',
n_jobs=n_jobs, method_params=method_params, cv=cv)
@slow_test
@requires_sklearn_0_15
def test_compute_covariance_auto_reg():
"""Test automated regularization."""
raw = read_raw_fif(raw_fname, preload=True, add_eeg_ref=False)
raw.resample(100, npad='auto') # much faster estimation
events = find_events(raw, stim_channel='STI 014')
event_ids = [1, 2, 3, 4]
reject = dict(mag=4e-12)
# cov with merged events and keep_sample_mean=True
events_merged = merge_events(events, event_ids, 1234)
# we need a few channels for numerical reasons in PCA/FA
picks = pick_types(raw.info, meg='mag', eeg=False)[:10]
raw.pick_channels([raw.ch_names[pick] for pick in picks])
raw.info.normalize_proj()
epochs = Epochs(
raw, events_merged, 1234, tmin=-0.2, tmax=0,
baseline=(-0.2, -0.1), proj=True, reject=reject, preload=True,
add_eeg_ref=False)
epochs = epochs.crop(None, 0)[:10]
method_params = dict(factor_analysis=dict(iter_n_components=[3]),
pca=dict(iter_n_components=[3]))
covs = compute_covariance(epochs, method='auto',
method_params=method_params,
projs=True,
return_estimators=True)
logliks = [c['loglik'] for c in covs]
assert_true(np.diff(logliks).max() <= 0) # descending order
methods = ['empirical',
'factor_analysis',
'ledoit_wolf',
'pca']
cov3 = compute_covariance(epochs, method=methods,
method_params=method_params, projs=None,
return_estimators=True)
assert_equal(set([c['method'] for c in cov3]),
set(methods))
# invalid prespecified method
assert_raises(ValueError, compute_covariance, epochs, method='pizza')
# invalid scalings
assert_raises(ValueError, compute_covariance, epochs, method='shrunk',
scalings=dict(misc=123))
run_tests_if_main()
|