1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
import os
import os.path as op
import sys
import warnings
import numpy as np
from nose.tools import assert_true, assert_equal, assert_raises
from numpy.testing import assert_allclose
from mne import (read_dipole, read_forward_solution,
convert_forward_solution, read_evokeds, read_cov,
SourceEstimate, write_evokeds, fit_dipole,
transform_surface_to, make_sphere_model, pick_types,
pick_info, EvokedArray, read_source_spaces, make_ad_hoc_cov,
make_forward_solution, Dipole, DipoleFixed, Epochs,
make_fixed_length_events)
from mne.simulation import simulate_evoked
from mne.datasets import testing
from mne.utils import (run_tests_if_main, _TempDir, slow_test, requires_mne,
run_subprocess)
from mne.proj import make_eeg_average_ref_proj
from mne.io import read_raw_fif, read_raw_ctf
from mne.surface import _compute_nearest
from mne.bem import _bem_find_surface, read_bem_solution
from mne.transforms import apply_trans, _get_trans
warnings.simplefilter('always')
data_path = testing.data_path(download=False)
fname_raw = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
fname_dip = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_set1.dip')
fname_evo = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-ave.fif')
fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-cov.fif')
fname_bem = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-1280-1280-1280-bem-sol.fif')
fname_src = op.join(data_path, 'subjects', 'sample', 'bem',
'sample-oct-2-src.fif')
fname_trans = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-trans.fif')
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
fname_xfit_dip = op.join(data_path, 'dip', 'fixed_auto.fif')
fname_xfit_dip_txt = op.join(data_path, 'dip', 'fixed_auto.dip')
fname_xfit_seq_txt = op.join(data_path, 'dip', 'sequential.dip')
fname_ctf = op.join(data_path, 'CTF', 'testdata_ctf_short.ds')
subjects_dir = op.join(data_path, 'subjects')
def _compare_dipoles(orig, new):
"""Compare dipole results for equivalence."""
assert_allclose(orig.times, new.times, atol=1e-3, err_msg='times')
assert_allclose(orig.pos, new.pos, err_msg='pos')
assert_allclose(orig.amplitude, new.amplitude, err_msg='amplitude')
assert_allclose(orig.gof, new.gof, err_msg='gof')
assert_allclose(orig.ori, new.ori, rtol=1e-4, atol=1e-4, err_msg='ori')
assert_equal(orig.name, new.name)
def _check_dipole(dip, n_dipoles):
"""Check dipole sizes."""
assert_equal(len(dip), n_dipoles)
assert_equal(dip.pos.shape, (n_dipoles, 3))
assert_equal(dip.ori.shape, (n_dipoles, 3))
assert_equal(dip.gof.shape, (n_dipoles,))
assert_equal(dip.amplitude.shape, (n_dipoles,))
@testing.requires_testing_data
def test_io_dipoles():
"""Test IO for .dip files."""
tempdir = _TempDir()
dipole = read_dipole(fname_dip)
print(dipole) # test repr
out_fname = op.join(tempdir, 'temp.dip')
dipole.save(out_fname)
dipole_new = read_dipole(out_fname)
_compare_dipoles(dipole, dipole_new)
@testing.requires_testing_data
def test_dipole_fitting_ctf():
"""Test dipole fitting with CTF data."""
raw_ctf = read_raw_ctf(fname_ctf).set_eeg_reference()
events = make_fixed_length_events(raw_ctf, 1)
evoked = Epochs(raw_ctf, events, 1, 0, 0, baseline=None,
add_eeg_ref=False).average()
cov = make_ad_hoc_cov(evoked.info)
sphere = make_sphere_model((0., 0., 0.))
# XXX Eventually we should do some better checks about accuracy, but
# for now our CTF phantom fitting tutorials will have to do
# (otherwise we need to add that to the testing dataset, which is
# a bit too big)
fit_dipole(evoked, cov, sphere)
@slow_test
@testing.requires_testing_data
@requires_mne
def test_dipole_fitting():
"""Test dipole fitting."""
amp = 10e-9
tempdir = _TempDir()
rng = np.random.RandomState(0)
fname_dtemp = op.join(tempdir, 'test.dip')
fname_sim = op.join(tempdir, 'test-ave.fif')
fwd = convert_forward_solution(read_forward_solution(fname_fwd),
surf_ori=False, force_fixed=True)
evoked = read_evokeds(fname_evo)[0]
cov = read_cov(fname_cov)
n_per_hemi = 5
vertices = [np.sort(rng.permutation(s['vertno'])[:n_per_hemi])
for s in fwd['src']]
nv = sum(len(v) for v in vertices)
stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
evoked = simulate_evoked(fwd, stc, evoked.info, cov, snr=20,
random_state=rng)
# For speed, let's use a subset of channels (strange but works)
picks = np.sort(np.concatenate([
pick_types(evoked.info, meg=True, eeg=False)[::2],
pick_types(evoked.info, meg=False, eeg=True)[::2]]))
evoked.pick_channels([evoked.ch_names[p] for p in picks])
evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
write_evokeds(fname_sim, evoked)
# Run MNE-C version
run_subprocess([
'mne_dipole_fit', '--meas', fname_sim, '--meg', '--eeg',
'--noise', fname_cov, '--dip', fname_dtemp,
'--mri', fname_fwd, '--reg', '0', '--tmin', '0',
])
dip_c = read_dipole(fname_dtemp)
# Run mne-python version
sphere = make_sphere_model(head_radius=0.1)
dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)
# Sanity check: do our residuals have less power than orig data?
data_rms = np.sqrt(np.sum(evoked.data ** 2, axis=0))
resi_rms = np.sqrt(np.sum(residuals ** 2, axis=0))
factor = 1.
# XXX weird, inexplicable differenc for 3.5 build we'll assume is due to
# Anaconda bug for now...
if os.getenv('TRAVIS', 'false') == 'true' and \
sys.version[:3] in ('3.5', '2.7'):
factor = 0.8
assert_true((data_rms > factor * resi_rms).all(),
msg='%s (factor: %s)' % ((data_rms / resi_rms).min(), factor))
# Compare to original points
transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
axis=0)
src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
axis=0)
# MNE-C skips the last "time" point :(
dip.crop(dip_c.times[0], dip_c.times[-1])
src_rr, src_nn = src_rr[:-1], src_nn[:-1]
# check that we did at least as well
corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
for d in (dip_c, dip):
new = d.pos
diffs = new - src_rr
corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori,
axis=1)))]
amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
gofs += [np.mean(d.gof)]
assert_true(dists[0] >= dists[1] * factor, 'dists: %s' % dists)
assert_true(corrs[0] <= corrs[1] / factor, 'corrs: %s' % corrs)
assert_true(gc_dists[0] >= gc_dists[1] * factor,
'gc-dists (ori): %s' % gc_dists)
assert_true(amp_errs[0] >= amp_errs[1] * factor,
'amplitude errors: %s' % amp_errs)
assert_true(gofs[0] <= gofs[1] / factor, 'gof: %s' % gofs)
@testing.requires_testing_data
def test_dipole_fitting_fixed():
"""Test dipole fitting with a fixed position."""
tpeak = 0.073
sphere = make_sphere_model(head_radius=0.1)
evoked = read_evokeds(fname_evo, baseline=(None, 0))[0]
evoked.pick_types(meg=True)
t_idx = np.argmin(np.abs(tpeak - evoked.times))
evoked_crop = evoked.copy().crop(tpeak, tpeak)
assert_equal(len(evoked_crop.times), 1)
cov = read_cov(fname_cov)
dip_seq, resid = fit_dipole(evoked_crop, cov, sphere)
assert_true(isinstance(dip_seq, Dipole))
assert_equal(len(dip_seq.times), 1)
pos, ori, gof = dip_seq.pos[0], dip_seq.ori[0], dip_seq.gof[0]
amp = dip_seq.amplitude[0]
# Fix position, allow orientation to change
dip_free, resid_free = fit_dipole(evoked, cov, sphere, pos=pos)
assert_true(isinstance(dip_free, Dipole))
assert_allclose(dip_free.times, evoked.times)
assert_allclose(np.tile(pos[np.newaxis], (len(evoked.times), 1)),
dip_free.pos)
assert_allclose(ori, dip_free.ori[t_idx]) # should find same ori
assert_true(np.dot(dip_free.ori, ori).mean() < 0.9) # but few the same
assert_allclose(gof, dip_free.gof[t_idx]) # ... same gof
assert_allclose(amp, dip_free.amplitude[t_idx]) # and same amp
assert_allclose(resid, resid_free[:, [t_idx]])
# Fix position and orientation
dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
assert_true(isinstance(dip_fixed, DipoleFixed))
assert_allclose(dip_fixed.times, evoked.times)
assert_allclose(dip_fixed.info['chs'][0]['loc'][:3], pos)
assert_allclose(dip_fixed.info['chs'][0]['loc'][3:6], ori)
assert_allclose(dip_fixed.data[1, t_idx], gof)
assert_allclose(resid, resid_fixed[:, [t_idx]])
_check_roundtrip_fixed(dip_fixed)
# Degenerate conditions
assert_raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0])
assert_raises(ValueError, fit_dipole, evoked, cov, sphere, ori=[1, 0, 0])
assert_raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0, 0, 0],
ori=[2, 0, 0])
assert_raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0.1, 0, 0])
@testing.requires_testing_data
def test_len_index_dipoles():
"""Test len and indexing of Dipole objects."""
dipole = read_dipole(fname_dip)
d0 = dipole[0]
d1 = dipole[:1]
_check_dipole(d0, 1)
_check_dipole(d1, 1)
_compare_dipoles(d0, d1)
mask = dipole.gof > 15
idx = np.where(mask)[0]
d_mask = dipole[mask]
_check_dipole(d_mask, 4)
_compare_dipoles(d_mask, dipole[idx])
@testing.requires_testing_data
def test_min_distance_fit_dipole():
"""Test dipole min_dist to inner_skull."""
subject = 'sample'
raw = read_raw_fif(fname_raw, preload=True, add_eeg_ref=False)
# select eeg data
picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
info = pick_info(raw.info, picks)
# Let's use cov = Identity
cov = read_cov(fname_cov)
cov['data'] = np.eye(cov['data'].shape[0])
# Simulated scal map
simulated_scalp_map = np.zeros(picks.shape[0])
simulated_scalp_map[27:34] = 1
simulated_scalp_map = simulated_scalp_map[:, None]
evoked = EvokedArray(simulated_scalp_map, info, tmin=0)
min_dist = 5. # distance in mm
bem = read_bem_solution(fname_bem)
dip, residual = fit_dipole(evoked, cov, bem, fname_trans,
min_dist=min_dist)
dist = _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir)
# Constraints are not exact, so bump the minimum slightly
assert_true(min_dist - 0.1 < (dist[0] * 1000.) < (min_dist + 1.))
assert_raises(ValueError, fit_dipole, evoked, cov, fname_bem, fname_trans,
-1.)
def _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir):
"""Compute dipole depth."""
trans = _get_trans(fname_trans)[0]
bem = read_bem_solution(fname_bem)
surf = _bem_find_surface(bem, 'inner_skull')
points = surf['rr']
points = apply_trans(trans['trans'], points)
depth = _compute_nearest(points, dip.pos, return_dists=True)[1][0]
return np.ravel(depth)
@testing.requires_testing_data
def test_accuracy():
"""Test dipole fitting to sub-mm accuracy."""
evoked = read_evokeds(fname_evo)[0].crop(0., 0.,)
evoked.pick_types(meg=True, eeg=False)
evoked.pick_channels([c for c in evoked.ch_names[::4]])
for rad, perc_90 in zip((0.09, None), (0.002, 0.004)):
bem = make_sphere_model('auto', rad, evoked.info,
relative_radii=(0.999, 0.998, 0.997, 0.995))
src = read_source_spaces(fname_src)
fwd = make_forward_solution(evoked.info, None, src, bem)
fwd = convert_forward_solution(fwd, force_fixed=True)
vertices = [src[0]['vertno'], src[1]['vertno']]
n_vertices = sum(len(v) for v in vertices)
amp = 10e-9
data = np.eye(n_vertices + 1)[:n_vertices]
data[-1, -1] = 1.
data *= amp
stc = SourceEstimate(data, vertices, 0., 1e-3, 'sample')
sim = simulate_evoked(fwd, stc, evoked.info, cov=None, snr=np.inf)
cov = make_ad_hoc_cov(evoked.info)
dip = fit_dipole(sim, cov, bem, min_dist=0.001)[0]
ds = []
for vi in range(n_vertices):
if vi < len(vertices[0]):
hi = 0
vertno = vi
else:
hi = 1
vertno = vi - len(vertices[0])
vertno = src[hi]['vertno'][vertno]
rr = src[hi]['rr'][vertno]
d = np.sqrt(np.sum((rr - dip.pos[vi]) ** 2))
ds.append(d)
# make sure that our median is sub-mm and the large majority are very
# close (we expect some to be off by a bit e.g. because they are
# radial)
assert_true((np.percentile(ds, [50, 90]) < [0.0005, perc_90]).all())
@testing.requires_testing_data
def test_dipole_fixed():
"""Test reading a fixed-position dipole (from Xfit)."""
dip = read_dipole(fname_xfit_dip)
_check_roundtrip_fixed(dip)
with warnings.catch_warnings(record=True) as w: # unused fields
dip_txt = read_dipole(fname_xfit_dip_txt)
assert_true(any('extra fields' in str(ww.message) for ww in w))
assert_allclose(dip.info['chs'][0]['loc'][:3], dip_txt.pos[0])
assert_allclose(dip_txt.amplitude[0], 12.1e-9)
with warnings.catch_warnings(record=True): # unused fields
dip_txt_seq = read_dipole(fname_xfit_seq_txt)
assert_allclose(dip_txt_seq.gof, [27.3, 46.4, 43.7, 41., 37.3, 32.5])
def _check_roundtrip_fixed(dip):
"""Helper to test roundtrip IO for fixed dipoles."""
tempdir = _TempDir()
dip.save(op.join(tempdir, 'test-dip.fif.gz'))
dip_read = read_dipole(op.join(tempdir, 'test-dip.fif.gz'))
assert_allclose(dip_read.data, dip_read.data)
assert_allclose(dip_read.times, dip.times)
assert_equal(dip_read.info['xplotter_layout'], dip.info['xplotter_layout'])
assert_equal(dip_read.ch_names, dip.ch_names)
for ch_1, ch_2 in zip(dip_read.info['chs'], dip.info['chs']):
assert_equal(ch_1['ch_name'], ch_2['ch_name'])
for key in ('loc', 'kind', 'unit_mul', 'range', 'coord_frame', 'unit',
'cal', 'coil_type', 'scanno', 'logno'):
assert_allclose(ch_1[key], ch_2[key], err_msg=key)
run_tests_if_main(False)
|