1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
import os.path as op
import warnings
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_almost_equal,
assert_array_equal, assert_allclose)
from nose.tools import assert_equal, assert_true, assert_raises
from scipy.signal import resample as sp_resample, butter
from mne import create_info
from mne.io import RawArray, read_raw_fif
from mne.filter import (band_pass_filter, high_pass_filter, low_pass_filter,
band_stop_filter, resample, _resample_stim_channels,
construct_iir_filter, notch_filter, detrend,
_overlap_add_filter, _smart_pad, design_mne_c_filter,
estimate_ringing_samples, filter_data)
from mne.utils import (sum_squared, run_tests_if_main, slow_test,
catch_logging, requires_version, _TempDir,
requires_mne, run_subprocess)
warnings.simplefilter('always') # enable b/c these tests throw warnings
rng = np.random.RandomState(0)
@requires_mne
def test_mne_c_design():
"""Test MNE-C filter design"""
tempdir = _TempDir()
temp_fname = op.join(tempdir, 'test_raw.fif')
out_fname = op.join(tempdir, 'test_c_raw.fif')
x = np.zeros((1, 10001))
x[0, 5000] = 1.
time_sl = slice(5000 - 4096, 5000 + 4097)
sfreq = 1000.
RawArray(x, create_info(1, sfreq, 'eeg')).save(temp_fname)
tols = dict(rtol=1e-4, atol=1e-4)
cmd = ('mne_process_raw', '--projoff', '--raw', temp_fname,
'--save', out_fname)
run_subprocess(cmd)
h = design_mne_c_filter(sfreq, None, 40)
h_c = read_raw_fif(out_fname, add_eeg_ref=False)[0][0][0][time_sl]
assert_allclose(h, h_c, **tols)
run_subprocess(cmd + ('--highpass', '5', '--highpassw', '2.5'))
h = design_mne_c_filter(sfreq, 5, 40, 2.5)
h_c = read_raw_fif(out_fname, add_eeg_ref=False)[0][0][0][time_sl]
assert_allclose(h, h_c, **tols)
run_subprocess(cmd + ('--lowpass', '1000', '--highpass', '10'))
h = design_mne_c_filter(sfreq, 10, None, verbose=True)
h_c = read_raw_fif(out_fname, add_eeg_ref=False)[0][0][0][time_sl]
assert_allclose(h, h_c, **tols)
@requires_version('scipy', '0.16')
def test_estimate_ringing():
"""Test our ringing estimation function"""
# Actual values might differ based on system, so let's be approximate
for kind in ('ba', 'sos'):
for thresh, lims in ((0.1, (30, 60)), # 47
(0.01, (300, 600)), # 475
(0.001, (3000, 6000)), # 4758
(0.0001, (30000, 60000))): # 37993
n_ring = estimate_ringing_samples(butter(3, thresh, output=kind))
assert_true(lims[0] <= n_ring <= lims[1],
msg='%s %s: %s <= %s <= %s'
% (kind, thresh, lims[0], n_ring, lims[1]))
with warnings.catch_warnings(record=True) as w:
assert_equal(estimate_ringing_samples(butter(4, 0.00001)), 100000)
assert_true(any('properly estimate' in str(ww.message) for ww in w))
def test_1d_filter():
"""Test our private overlap-add filtering function"""
# make some random signals and filters
for n_signal in (1, 2, 3, 5, 10, 20, 40):
x = rng.randn(n_signal)
for n_filter in (1, 2, 3, 5, 10, 11, 20, 21, 40, 41, 100, 101):
for filter_type in ('identity', 'random'):
if filter_type == 'random':
h = rng.randn(n_filter)
else: # filter_type == 'identity'
h = np.concatenate([[1.], np.zeros(n_filter - 1)])
# ensure we pad the signal the same way for both filters
n_pad = n_filter - 1
x_pad = _smart_pad(x, np.array([n_pad, n_pad]))
for phase in ('zero', 'linear', 'zero-double'):
# compute our expected result the slow way
if phase == 'zero':
# only allow zero-phase for odd-length filters
if n_filter % 2 == 0:
assert_raises(RuntimeError, _overlap_add_filter,
x[np.newaxis], h, phase=phase)
continue
shift = (len(h) - 1) // 2
x_expected = np.convolve(x_pad, h)
x_expected = x_expected[shift:len(x_expected) - shift]
elif phase == 'zero-double':
shift = len(h) - 1
x_expected = np.convolve(x_pad, h)
x_expected = np.convolve(x_expected[::-1], h)[::-1]
x_expected = x_expected[shift:len(x_expected) - shift]
shift = 0
else:
shift = 0
x_expected = np.convolve(x_pad, h)
x_expected = x_expected[:len(x_expected) - len(h) + 1]
# remove padding
if n_pad > 0:
x_expected = x_expected[n_pad:len(x_expected) - n_pad]
assert_equal(len(x_expected), len(x))
# make sure we actually set things up reasonably
if filter_type == 'identity':
out = x_pad.copy()
out = out[shift + n_pad:]
out = out[:len(x)]
out = np.concatenate((out, np.zeros(max(len(x) -
len(out), 0))))
assert_equal(len(out), len(x))
assert_allclose(out, x_expected)
assert_equal(len(x_expected), len(x))
# compute our version
for n_fft in (None, 32, 128, 129, 1023, 1024, 1025, 2048):
# need to use .copy() b/c signal gets modified inplace
x_copy = x[np.newaxis, :].copy()
min_fft = 2 * n_filter - 1
if phase == 'zero-double':
min_fft = 2 * min_fft - 1
if n_fft is not None and n_fft < min_fft:
assert_raises(ValueError, _overlap_add_filter,
x_copy, h, n_fft, phase=phase)
else:
x_filtered = _overlap_add_filter(
x_copy, h, n_fft, phase=phase)[0]
assert_allclose(x_filtered, x_expected, atol=1e-13)
@requires_version('scipy', '0.16')
def test_iir_stability():
"""Test IIR filter stability check"""
sig = np.empty(1000)
sfreq = 1000
# This will make an unstable filter, should throw RuntimeError
assert_raises(RuntimeError, high_pass_filter, sig, sfreq, 0.6,
method='iir', iir_params=dict(ftype='butter', order=8,
output='ba'))
# This one should work just fine
high_pass_filter(sig, sfreq, 0.6, method='iir',
iir_params=dict(ftype='butter', order=8, output='sos'))
# bad system type
assert_raises(ValueError, high_pass_filter, sig, sfreq, 0.6, method='iir',
iir_params=dict(ftype='butter', order=8, output='foo'))
# missing ftype
assert_raises(RuntimeError, high_pass_filter, sig, sfreq, 0.6,
method='iir', iir_params=dict(order=8, output='sos'))
# bad ftype
assert_raises(RuntimeError, high_pass_filter, sig, sfreq, 0.6,
method='iir',
iir_params=dict(order=8, ftype='foo', output='sos'))
# missing gstop
assert_raises(RuntimeError, high_pass_filter, sig, sfreq, 0.6,
method='iir', iir_params=dict(gpass=0.5, output='sos'))
# can't pass iir_params if method='fft'
assert_raises(ValueError, high_pass_filter, sig, sfreq, 0.1,
method='fft', iir_params=dict(ftype='butter', order=2,
output='sos'))
# method must be string
assert_raises(TypeError, high_pass_filter, sig, sfreq, 0.1,
method=1)
# unknown method
assert_raises(ValueError, high_pass_filter, sig, sfreq, 0.1,
method='blah')
# bad iir_params
assert_raises(TypeError, high_pass_filter, sig, sfreq, 0.1,
method='iir', iir_params='blah')
assert_raises(ValueError, high_pass_filter, sig, sfreq, 0.1,
method='fft', iir_params=dict())
# should pass because dafault trans_bandwidth is not relevant
iir_params = dict(ftype='butter', order=2, output='sos')
x_sos = high_pass_filter(sig, 250, 0.5, method='iir',
iir_params=iir_params)
iir_params_sos = construct_iir_filter(iir_params, f_pass=0.5, sfreq=250,
btype='highpass')
x_sos_2 = high_pass_filter(sig, 250, 0.5, method='iir',
iir_params=iir_params_sos)
assert_allclose(x_sos[100:-100], x_sos_2[100:-100])
x_ba = high_pass_filter(sig, 250, 0.5, method='iir',
iir_params=dict(ftype='butter', order=2,
output='ba'))
# Note that this will fail for higher orders (e.g., 6) showing the
# hopefully decreased numerical error of SOS
assert_allclose(x_sos[100:-100], x_ba[100:-100])
def test_notch_filters():
"""Test notch filters"""
# let's use an ugly, prime sfreq for fun
sfreq = 487.0
sig_len_secs = 20
t = np.arange(0, int(sig_len_secs * sfreq)) / sfreq
freqs = np.arange(60, 241, 60)
# make a "signal"
a = rng.randn(int(sig_len_secs * sfreq))
orig_power = np.sqrt(np.mean(a ** 2))
# make line noise
a += np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)
# only allow None line_freqs with 'spectrum_fit' mode
assert_raises(ValueError, notch_filter, a, sfreq, None, 'fft')
assert_raises(ValueError, notch_filter, a, sfreq, None, 'iir')
methods = ['spectrum_fit', 'spectrum_fit', 'fft', 'fft', 'iir']
filter_lengths = [None, None, None, 8192, None]
line_freqs = [None, freqs, freqs, freqs, freqs]
tols = [2, 1, 1, 1]
for meth, lf, fl, tol in zip(methods, line_freqs, filter_lengths, tols):
with catch_logging() as log_file:
with warnings.catch_warnings(record=True): # filter_length=None
b = notch_filter(a, sfreq, lf, filter_length=fl, method=meth,
phase='zero', verbose=True)
if lf is None:
out = log_file.getvalue().split('\n')[:-1]
if len(out) != 2 and len(out) != 3: # force_serial: len(out) == 3
raise ValueError('Detected frequencies not logged properly')
out = np.fromstring(out[-1], sep=', ')
assert_array_almost_equal(out, freqs)
new_power = np.sqrt(sum_squared(b) / b.size)
assert_almost_equal(new_power, orig_power, tol)
def test_resample():
"""Test resampling"""
x = rng.normal(0, 1, (10, 10, 10))
x_rs = resample(x, 1, 2, 10)
assert_equal(x.shape, (10, 10, 10))
assert_equal(x_rs.shape, (10, 10, 5))
x_2 = x.swapaxes(0, 1)
x_2_rs = resample(x_2, 1, 2, 10)
assert_array_equal(x_2_rs.swapaxes(0, 1), x_rs)
x_3 = x.swapaxes(0, 2)
x_3_rs = resample(x_3, 1, 2, 10, 0)
assert_array_equal(x_3_rs.swapaxes(0, 2), x_rs)
# make sure we cast to array if necessary
assert_array_equal(resample([0, 0], 2, 1), [0., 0., 0., 0.])
def test_resample_stim_channel():
"""Test resampling of stim channels"""
# Downsampling
assert_array_equal(
_resample_stim_channels([1, 0, 0, 0, 2, 0, 0, 0], 1, 2),
[[1, 0, 2, 0]])
assert_array_equal(
_resample_stim_channels([1, 0, 0, 0, 2, 0, 0, 0], 1, 1.5),
[[1, 0, 0, 2, 0]])
assert_array_equal(
_resample_stim_channels([1, 0, 0, 1, 2, 0, 0, 1], 1, 2),
[[1, 1, 2, 1]])
# Upsampling
assert_array_equal(
_resample_stim_channels([1, 2, 3], 2, 1), [[1, 1, 2, 2, 3, 3]])
assert_array_equal(
_resample_stim_channels([1, 2, 3], 2.5, 1), [[1, 1, 1, 2, 2, 3, 3, 3]])
# Proper number of samples in stim channel resampling from io/base.py
data_chunk = np.zeros((1, 315600))
for new_data_len in (52598, 52599, 52600, 52601, 315599, 315600):
new_data = _resample_stim_channels(data_chunk, new_data_len,
data_chunk.shape[1])
assert_equal(new_data.shape[1], new_data_len)
@requires_version('scipy', '0.16')
@slow_test
def test_filters():
"""Test low-, band-, high-pass, and band-stop filters plus resampling"""
sfreq = 100
sig_len_secs = 15
a = rng.randn(2, sig_len_secs * sfreq)
# let's test our catchers
for fl in ['blah', [0, 1], 1000.5, '10ss', '10']:
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, fl,
1.0, 1.0, phase='zero')
for nj in ['blah', 0.5]:
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, 100,
1.0, 1.0, n_jobs=nj, phase='zero', fir_window='hann')
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, 100,
1.0, 1.0, phase='zero', fir_window='foo')
# > Nyq/2
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, sfreq / 2.,
100, 1.0, 1.0, phase='zero', fir_window='hann')
assert_raises(ValueError, low_pass_filter, a, sfreq, sfreq / 2.,
100, 1.0, phase='zero', fir_window='hann')
# check our short-filter warning:
with warnings.catch_warnings(record=True) as w:
# Warning for low attenuation
band_pass_filter(a, sfreq, 1, 8, filter_length=256, phase='zero')
assert_true(any('attenuation' in str(ww.message) for ww in w))
with warnings.catch_warnings(record=True) as w:
# Warning for too short a filter
band_pass_filter(a, sfreq, 1, 8, filter_length='0.5s', phase='zero')
assert_true(any('Increase filter_length' in str(ww.message) for ww in w))
# try new default and old default
for fl in ['auto', '10s', '5000ms', 1024]:
bp = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0, phase='zero',
fir_window='hamming')
bs = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0,
phase='zero', fir_window='hamming')
lp = low_pass_filter(a, sfreq, 8, fl, 1.0, n_jobs=2, phase='zero',
fir_window='hamming')
hp = high_pass_filter(lp, sfreq, 4, fl, 1.0, phase='zero',
fir_window='hamming')
assert_array_almost_equal(hp, bp, 4)
assert_array_almost_equal(bp + bs, a, 4)
# and since these are low-passed, downsampling/upsampling should be close
n_resamp_ignore = 10
bp_up_dn = resample(resample(bp, 2, 1, n_jobs=2), 1, 2, n_jobs=2)
assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# note that on systems without CUDA, this line serves as a test for a
# graceful fallback to n_jobs=1
bp_up_dn = resample(resample(bp, 2, 1, n_jobs='cuda'), 1, 2, n_jobs='cuda')
assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# test to make sure our resamling matches scipy's
bp_up_dn = sp_resample(sp_resample(bp, 2 * bp.shape[-1], axis=-1,
window='boxcar'),
bp.shape[-1], window='boxcar', axis=-1)
assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
# make sure we don't alias
t = np.array(list(range(sfreq * sig_len_secs))) / float(sfreq)
# make sinusoid close to the Nyquist frequency
sig = np.sin(2 * np.pi * sfreq / 2.2 * t)
# signal should disappear with 2x downsampling
sig_gone = resample(sig, 1, 2)[n_resamp_ignore:-n_resamp_ignore]
assert_array_almost_equal(np.zeros_like(sig_gone), sig_gone, 2)
# let's construct some filters
iir_params = dict(ftype='cheby1', gpass=1, gstop=20, output='ba')
iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
# this should be a third order filter
assert_equal(iir_params['a'].size - 1, 3)
assert_equal(iir_params['b'].size - 1, 3)
iir_params = dict(ftype='butter', order=4, output='ba')
iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
assert_equal(iir_params['a'].size - 1, 4)
assert_equal(iir_params['b'].size - 1, 4)
iir_params = dict(ftype='cheby1', gpass=1, gstop=20, output='sos')
iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
# this should be a third order filter, which requires 2 SOS ((2, 6))
assert_equal(iir_params['sos'].shape, (2, 6))
iir_params = dict(ftype='butter', order=4, output='sos')
iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
assert_equal(iir_params['sos'].shape, (2, 6))
# check that picks work for 3d array with one channel and picks=[0]
a = rng.randn(5 * sfreq, 5 * sfreq)
b = a[:, None, :]
a_filt = band_pass_filter(a, sfreq, 4, 8, 400, 2.0, 2.0, phase='zero',
fir_window='hamming')
b_filt = band_pass_filter(b, sfreq, 4, 8, 400, 2.0, 2.0, picks=[0],
phase='zero', fir_window='hamming')
assert_array_equal(a_filt[:, None, :], b_filt)
# check for n-dimensional case
a = rng.randn(2, 2, 2, 2)
with warnings.catch_warnings(record=True): # filter too long
assert_raises(ValueError, band_pass_filter, a, sfreq, 4, 8, 100,
1.0, 1.0, picks=np.array([0, 1]), phase='zero')
def test_filter_auto():
"""Test filter auto parameters"""
# test that our overlap-add filtering doesn't introduce strange
# artifacts (from mne_analyze mailing list 2015/06/25)
N = 300
sfreq = 100.
lp = 10.
sine_freq = 1.
x = np.ones(N)
t = np.arange(N) / sfreq
x += np.sin(2 * np.pi * sine_freq * t)
x_orig = x.copy()
x_filt = low_pass_filter(x, sfreq, lp, 'auto', 'auto', phase='zero',
fir_window='hamming')
assert_array_equal(x, x_orig)
# the firwin2 function gets us this close
assert_allclose(x, x_filt, rtol=1e-4, atol=1e-4)
assert_array_equal(x_filt, low_pass_filter(
x, sfreq, lp, 'auto', 'auto', phase='zero', fir_window='hamming'))
assert_array_equal(x, x_orig)
assert_array_equal(x_filt, filter_data(
x, sfreq, None, lp, h_trans_bandwidth='auto', phase='zero',
fir_window='hamming', filter_length='auto'))
assert_array_equal(x, x_orig)
assert_array_equal(x_filt, filter_data(
x, sfreq, None, lp, h_trans_bandwidth='auto', phase='zero',
fir_window='hamming', filter_length='auto', copy=False))
assert_array_equal(x, x_filt)
# degenerate conditions
assert_raises(ValueError, filter_data, x, -sfreq, 1, 10)
assert_raises(ValueError, filter_data, x, sfreq, 1, sfreq * 0.75)
assert_raises(TypeError, filter_data, x.astype(np.float32), sfreq, None,
10, filter_length='auto', h_trans_bandwidth='auto')
def test_cuda():
"""Test CUDA-based filtering"""
# NOTE: don't make test_cuda() the last test, or pycuda might spew
# some warnings about clean-up failing
# Also, using `n_jobs='cuda'` on a non-CUDA system should be fine,
# as it should fall back to using n_jobs=1.
sfreq = 500
sig_len_secs = 20
a = rng.randn(sig_len_secs * sfreq)
with catch_logging() as log_file:
for fl in ['auto', '10s', 2048]:
bp = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0, n_jobs=1,
phase='zero', fir_window='hann')
bs = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0,
n_jobs=1, phase='zero', fir_window='hann')
lp = low_pass_filter(a, sfreq, 8, fl, 1.0, n_jobs=1, phase='zero',
fir_window='hann')
hp = high_pass_filter(lp, sfreq, 4, fl, 1.0, n_jobs=1,
phase='zero', fir_window='hann')
bp_c = band_pass_filter(a, sfreq, 4, 8, fl, 1.0, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero', fir_window='hann')
bs_c = band_stop_filter(a, sfreq, 4 - 1.0, 8 + 1.0, fl, 1.0, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero', fir_window='hann')
lp_c = low_pass_filter(a, sfreq, 8, fl, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero', fir_window='hann')
hp_c = high_pass_filter(lp, sfreq, 4, fl, 1.0,
n_jobs='cuda', verbose='INFO',
phase='zero', fir_window='hann')
assert_array_almost_equal(bp, bp_c, 12)
assert_array_almost_equal(bs, bs_c, 12)
assert_array_almost_equal(lp, lp_c, 12)
assert_array_almost_equal(hp, hp_c, 12)
# check to make sure we actually used CUDA
out = log_file.getvalue().split('\n')[:-1]
# triage based on whether or not we actually expected to use CUDA
from mne.cuda import _cuda_capable # allow above funs to set it
tot = 12 if _cuda_capable else 0
assert_true(sum(['Using CUDA for FFT FIR filtering' in o
for o in out]) == tot)
# check resampling
for window in ('boxcar', 'triang'):
for N in (997, 1000): # one prime, one even
a = rng.randn(2, N)
for fro, to in ((1, 2), (2, 1), (1, 3), (3, 1)):
a1 = resample(a, fro, to, n_jobs=1, npad='auto',
window=window)
a2 = resample(a, fro, to, n_jobs='cuda', npad='auto',
window=window)
assert_allclose(a1, a2, rtol=1e-7, atol=1e-14)
assert_array_almost_equal(a1, a2, 14)
assert_array_equal(resample([0, 0], 2, 1, n_jobs='cuda'), [0., 0., 0., 0.])
assert_array_equal(resample(np.zeros(2, np.float32), 2, 1, n_jobs='cuda'),
[0., 0., 0., 0.])
def test_detrend():
"""Test zeroth and first order detrending"""
x = np.arange(10)
assert_array_almost_equal(detrend(x, 1), np.zeros_like(x))
x = np.ones(10)
assert_array_almost_equal(detrend(x, 0), np.zeros_like(x))
run_tests_if_main()
|