1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
# Author: Roman Goj <roman.goj@gmail.com>
#
# License: BSD (3-clause)
import copy as cp
import numpy as np
from scipy.fftpack import fftfreq
from ..io.pick import pick_types
from ..utils import logger, verbose, warn
from ..time_frequency.multitaper import (dpss_windows, _mt_spectra,
_csd_from_mt, _psd_from_mt_adaptive)
from ..utils import deprecated
from ..externals.six.moves import xrange as range
class CrossSpectralDensity(object):
"""Cross-spectral density
Parameters
----------
data : array of shape (n_channels, n_channels)
The cross-spectral density matrix.
ch_names : list of string
List of channels' names.
projs :
List of projectors used in CSD calculation.
bads :
List of bad channels.
frequencies : float | list of float
Frequency or frequencies for which the CSD matrix was calculated. If a
list is passed, data is a sum across CSD matrices for all frequencies.
n_fft : int
Length of the FFT used when calculating the CSD matrix.
"""
def __init__(self, data, ch_names, projs, bads, frequencies, n_fft):
self.data = data
self.dim = len(data)
self.ch_names = cp.deepcopy(ch_names)
self.projs = cp.deepcopy(projs)
self.bads = cp.deepcopy(bads)
self.frequencies = np.atleast_1d(np.copy(frequencies))
self.n_fft = n_fft
def __repr__(self):
s = 'frequencies : %s' % self.frequencies
s += ', size : %s x %s' % self.data.shape
s += ', data : %s' % self.data
return '<CrossSpectralDensity | %s>' % s
@deprecated(("compute_epochs_csd has been deprecated and will be removed in "
"0.14, use csd_epochs instead."))
@verbose
def compute_epochs_csd(epochs, mode='multitaper', fmin=0, fmax=np.inf,
fsum=True, tmin=None, tmax=None, n_fft=None,
mt_bandwidth=None, mt_adaptive=False, mt_low_bias=True,
projs=None, verbose=None):
return csd_epochs(epochs, mode=mode, fmin=fmin, fmax=fmax,
fsum=fsum, tmin=tmin, tmax=tmax, n_fft=n_fft,
mt_bandwidth=mt_bandwidth, mt_adaptive=mt_adaptive,
mt_low_bias=mt_low_bias, projs=projs, verbose=verbose)
@verbose
def csd_epochs(epochs, mode='multitaper', fmin=0, fmax=np.inf,
fsum=True, tmin=None, tmax=None, n_fft=None,
mt_bandwidth=None, mt_adaptive=False, mt_low_bias=True,
projs=None, verbose=None):
"""Estimate cross-spectral density from epochs
Note: Baseline correction should be used when creating the Epochs.
Otherwise the computed cross-spectral density will be inaccurate.
Note: Results are scaled by sampling frequency for compatibility with
Matlab.
Parameters
----------
epochs : instance of Epochs
The epochs.
mode : str
Spectrum estimation mode can be either: 'multitaper' or 'fourier'.
fmin : float
Minimum frequency of interest.
fmax : float | np.inf
Maximum frequency of interest.
fsum : bool
Sum CSD values for the frequencies of interest. Summing is performed
instead of averaging so that accumulated power is comparable to power
in the time domain. If True, a single CSD matrix will be returned. If
False, the output will be a list of CSD matrices.
tmin : float | None
Minimum time instant to consider. If None start at first sample.
tmax : float | None
Maximum time instant to consider. If None end at last sample.
n_fft : int | None
Length of the FFT. If None the exact number of samples between tmin and
tmax will be used.
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'multitaper' mode.
mt_adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD.
Only used in 'multitaper' mode.
mt_low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth. Only used in 'multitaper' mode.
projs : list of Projection | None
List of projectors to use in CSD calculation, or None to indicate that
the projectors from the epochs should be inherited.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
csd : instance of CrossSpectralDensity
The computed cross-spectral density.
"""
# Portions of this code adapted from mne/connectivity/spectral.py
# Check correctness of input data and parameters
if fmax < fmin:
raise ValueError('fmax must be larger than fmin')
tstep = epochs.times[1] - epochs.times[0]
if tmin is not None and tmin < epochs.times[0] - tstep:
raise ValueError('tmin should be larger than the smallest data time '
'point')
if tmax is not None and tmax > epochs.times[-1] + tstep:
raise ValueError('tmax should be smaller than the largest data time '
'point')
if tmax is not None and tmin is not None:
if tmax < tmin:
raise ValueError('tmax must be larger than tmin')
if epochs.baseline is None and epochs.info['highpass'] < 0.1:
warn('Epochs are not baseline corrected or enough highpass filtered. '
'Cross-spectral density may be inaccurate.')
if projs is None:
projs = cp.deepcopy(epochs.info['projs'])
else:
projs = cp.deepcopy(projs)
picks_meeg = pick_types(epochs[0].info, meg=True, eeg=True, eog=False,
ref_meg=False, exclude='bads')
ch_names = [epochs.ch_names[k] for k in picks_meeg]
# Preparing time window slice
tstart, tend = None, None
if tmin is not None:
tstart = np.where(epochs.times >= tmin)[0][0]
if tmax is not None:
tend = np.where(epochs.times <= tmax)[0][-1] + 1
tslice = slice(tstart, tend, None)
n_times = len(epochs.times[tslice])
n_fft = n_times if n_fft is None else n_fft
# Preparing frequencies of interest
sfreq = epochs.info['sfreq']
orig_frequencies = fftfreq(n_fft, 1. / sfreq)
freq_mask = (orig_frequencies > fmin) & (orig_frequencies < fmax)
frequencies = orig_frequencies[freq_mask]
n_freqs = len(frequencies)
if n_freqs == 0:
raise ValueError('No discrete fourier transform results within '
'the given frequency window. Please widen either '
'the frequency window or the time window')
# Preparing for computing CSD
logger.info('Computing cross-spectral density from epochs...')
window_fun, eigvals, n_tapers, mt_adaptive = _compute_csd_params(
n_times, sfreq, mode, mt_bandwidth, mt_low_bias, mt_adaptive)
csds_mean = np.zeros((len(ch_names), len(ch_names), n_freqs),
dtype=complex)
# Picking frequencies of interest
freq_mask_mt = freq_mask[orig_frequencies >= 0]
# Compute CSD for each epoch
n_epochs = 0
for epoch in epochs:
epoch = epoch[picks_meeg][:, tslice]
# Calculating Fourier transform using multitaper module
csds_epoch = _csd_array(epoch, sfreq, window_fun, eigvals, freq_mask,
freq_mask_mt, n_fft, mode, mt_adaptive)
# Scaling by number of samples and compensating for loss of power due
# to windowing (see section 11.5.2 in Bendat & Piersol).
if mode == 'fourier':
csds_epoch /= n_times
csds_epoch *= 8 / 3.
# Scaling by sampling frequency for compatibility with Matlab
csds_epoch /= sfreq
csds_mean += csds_epoch
n_epochs += 1
csds_mean /= n_epochs
logger.info('[done]')
# Summing over frequencies of interest or returning a list of separate CSD
# matrices for each frequency
if fsum is True:
csd_mean_fsum = np.sum(csds_mean, 2)
csd = CrossSpectralDensity(csd_mean_fsum, ch_names, projs,
epochs.info['bads'],
frequencies=frequencies, n_fft=n_fft)
return csd
else:
csds = []
for i in range(n_freqs):
csds.append(CrossSpectralDensity(csds_mean[:, :, i], ch_names,
projs, epochs.info['bads'],
frequencies=frequencies[i],
n_fft=n_fft))
return csds
@verbose
def csd_array(X, sfreq, mode='multitaper', fmin=0, fmax=np.inf,
fsum=True, n_fft=None, mt_bandwidth=None,
mt_adaptive=False, mt_low_bias=True, verbose=None):
"""Estimate cross-spectral density from an array.
.. note:: Results are scaled by sampling frequency for compatibility with
Matlab.
Parameters
----------
X : array-like, shape (n_replicates, n_series, n_times)
The time series data consisting of n_replicated separate observations
of signals with n_series components and of length n_times. For example,
n_replicates could be the number of epochs, and n_series the number of
vertices in a source-space.
sfreq : float
Sampling frequency of observations.
mode : str
Spectrum estimation mode can be either: 'multitaper' or 'fourier'.
fmin : float
Minimum frequency of interest.
fmax : float
Maximum frequency of interest.
fsum : bool
Sum CSD values for the frequencies of interest. Summing is performed
instead of averaging so that accumulated power is comparable to power
in the time domain. If True, a single CSD matrix will be returned. If
False, the output will be an array of CSD matrices.
n_fft : int | None
Length of the FFT. If None the exact number of samples between tmin and
tmax will be used.
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'multitaper' mode.
mt_adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD.
Only used in 'multitaper' mode.
mt_low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth. Only used in 'multitaper' mode.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
csd : array, shape (n_freqs, n_series, n_series) if fsum is True, otherwise (n_series, n_series).
The computed cross spectral-density (either summed or not).
freqs : array
Frequencies the cross spectral-density is evaluated at.
""" # noqa
# Check correctness of input data and parameters
if fmax < fmin:
raise ValueError('fmax must be larger than fmin')
X = np.asarray(X, dtype=float)
if X.ndim != 3:
raise ValueError("X must be n_replicates x n_series x n_times.")
n_replicates, n_series, n_times = X.shape
# Preparing frequencies of interest
n_fft = n_times if n_fft is None else n_fft
orig_frequencies = fftfreq(n_fft, 1. / sfreq)
freq_mask = (orig_frequencies > fmin) & (orig_frequencies < fmax)
frequencies = orig_frequencies[freq_mask]
n_freqs = len(frequencies)
if n_freqs == 0:
raise ValueError('No discrete fourier transform results within '
'the given frequency window. Please widen either '
'the frequency window or the time window')
# Preparing for computing CSD
logger.info('Computing cross-spectral density from array...')
window_fun, eigvals, n_tapers, mt_adaptive = _compute_csd_params(
n_times, sfreq, mode, mt_bandwidth, mt_low_bias, mt_adaptive)
csds_mean = np.zeros((n_series, n_series, n_freqs), dtype=complex)
# Picking frequencies of interest
freq_mask_mt = freq_mask[orig_frequencies >= 0]
# Compute CSD for each trial
for xi in X:
csds_trial = _csd_array(xi, sfreq, window_fun, eigvals, freq_mask,
freq_mask_mt, n_fft, mode, mt_adaptive)
# Scaling by number of trials and compensating for loss of power due
# to windowing (see section 11.5.2 in Bendat & Piersol).
if mode == 'fourier':
csds_trial /= n_times
csds_trial *= 8 / 3.
# Scaling by sampling frequency for compatibility with Matlab
csds_trial /= sfreq
csds_mean += csds_trial
csds_mean /= n_replicates
logger.info('[done]')
# Summing over frequencies of interest or returning a list of separate CSD
# matrices for each frequency
if fsum is True:
csds_mean = np.sum(csds_mean, 2)
return csds_mean, frequencies
def _compute_csd_params(n_times, sfreq, mode, mt_bandwidth, mt_low_bias,
mt_adaptive):
""" Auxliary function to compute windowing and multitaper parameters.
Parameters
----------
n_times : int
Number of time points.
s_freq : int
Sampling frequency of signal.
mode : str
Spectrum estimation mode can be either: 'multitaper' or 'fourier'.
mt_bandwidth : float | None
The bandwidth of the multitaper windowing function in Hz.
Only used in 'multitaper' mode.
mt_low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth. Only used in 'multitaper' mode.
mt_adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD.
Only used in 'multitaper' mode.
Returns
-------
window_fun : array
Window function(s) of length n_times. When 'multitaper' mode is used
will correspond to first output of `dpss_windows` and when 'fourier'
mode is used will be a Hanning window of length `n_times`.
eigvals : array | float
Eigenvalues associated with wondow functions. Only needed when mode is
'multitaper'. When the mode 'fourier' is used this is set to 1.
n_tapers : int | None
Number of tapers to use. Only used when mode is 'multitaper'.
ret_mt_adaptive : bool
Updated value of `mt_adaptive` argument as certain parameter values
will not allow adaptive spectral estimators.
"""
ret_mt_adaptive = mt_adaptive
if mode == 'multitaper':
# Compute standardized half-bandwidth
if mt_bandwidth is not None:
half_nbw = float(mt_bandwidth) * n_times / (2. * sfreq)
else:
half_nbw = 2.
# Compute DPSS windows
n_tapers_max = int(2 * half_nbw)
window_fun, eigvals = dpss_windows(n_times, half_nbw, n_tapers_max,
low_bias=mt_low_bias)
n_tapers = len(eigvals)
logger.info(' using multitaper spectrum estimation with %d DPSS '
'windows' % n_tapers)
if mt_adaptive and len(eigvals) < 3:
warn('Not adaptively combining the spectral estimators due to a '
'low number of tapers.')
ret_mt_adaptive = False
elif mode == 'fourier':
logger.info(' using FFT with a Hanning window to estimate spectra')
window_fun = np.hanning(n_times)
ret_mt_adaptive = False
eigvals = 1.
n_tapers = None
else:
raise ValueError('Mode has an invalid value.')
return window_fun, eigvals, n_tapers, ret_mt_adaptive
def _csd_array(x, sfreq, window_fun, eigvals, freq_mask, freq_mask_mt, n_fft,
mode, mt_adaptive):
""" Calculating Fourier transform using multitaper module.
The arguments correspond to the values in `compute_csd_epochs` and
`csd_array`.
"""
x_mt, _ = _mt_spectra(x, window_fun, sfreq, n_fft)
if mt_adaptive:
# Compute adaptive weights
_, weights = _psd_from_mt_adaptive(x_mt, eigvals, freq_mask,
return_weights=True)
# Tiling weights so that we can easily use _csd_from_mt()
weights = weights[:, np.newaxis, :, :]
weights = np.tile(weights, [1, x_mt.shape[0], 1, 1])
else:
# Do not use adaptive weights
if mode == 'multitaper':
weights = np.sqrt(eigvals)[np.newaxis, np.newaxis, :, np.newaxis]
else:
# Hack so we can sum over axis=-2
weights = np.array([1.])[:, np.newaxis, np.newaxis, np.newaxis]
x_mt = x_mt[:, :, freq_mask_mt]
# Calculating CSD
# Tiling x_mt so that we can easily use _csd_from_mt()
x_mt = x_mt[:, np.newaxis, :, :]
x_mt = np.tile(x_mt, [1, x_mt.shape[0], 1, 1])
y_mt = np.transpose(x_mt, axes=[1, 0, 2, 3])
weights_y = np.transpose(weights, axes=[1, 0, 2, 3])
csds = _csd_from_mt(x_mt, y_mt, weights, weights_y)
return csds
|