1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
# Authors : Alexandre Gramfort, alexandre.gramfort@telecom-paristech.fr (2011)
# Denis A. Engemann <denis.engemann@gmail.com>
# License : BSD 3-clause
import numpy as np
from ..parallel import parallel_func
from ..io.pick import _pick_data_channels
from ..utils import logger, verbose, _time_mask
from .multitaper import _psd_multitaper
def _pwelch(epoch, noverlap, nfft, fs, freq_mask, welch_fun):
"""Aux function"""
return welch_fun(epoch, nperseg=nfft, noverlap=noverlap,
nfft=nfft, fs=fs)[1][..., freq_mask]
def _compute_psd(data, fmin, fmax, Fs, n_fft, psd, n_overlap, pad_to):
"""Compute the PSD"""
out = [psd(d, Fs=Fs, NFFT=n_fft, noverlap=n_overlap, pad_to=pad_to)
for d in data]
psd = np.array([o[0] for o in out])
freqs = out[0][1]
mask = (freqs >= fmin) & (freqs <= fmax)
freqs = freqs[mask]
return psd[:, mask], freqs
def _check_nfft(n, n_fft, n_overlap):
"""Helper to make sure n_fft and n_overlap make sense"""
n_fft = n if n_fft > n else n_fft
n_overlap = n_fft - 1 if n_overlap >= n_fft else n_overlap
return n_fft, n_overlap
def _check_psd_data(inst, tmin, tmax, picks, proj):
"""Helper to do checks on PSD data / pull arrays from inst"""
from ..io.base import _BaseRaw
from ..epochs import _BaseEpochs
from ..evoked import Evoked
if not isinstance(inst, (_BaseEpochs, _BaseRaw, Evoked)):
raise ValueError('epochs must be an instance of Epochs, Raw, or'
'Evoked. Got type {0}'.format(type(inst)))
time_mask = _time_mask(inst.times, tmin, tmax, sfreq=inst.info['sfreq'])
if picks is None:
picks = _pick_data_channels(inst.info, with_ref_meg=False)
if proj:
# Copy first so it's not modified
inst = inst.copy().apply_proj()
sfreq = inst.info['sfreq']
if isinstance(inst, _BaseRaw):
start, stop = np.where(time_mask)[0][[0, -1]]
data, times = inst[picks, start:(stop + 1)]
elif isinstance(inst, _BaseEpochs):
data = inst.get_data()[:, picks][:, :, time_mask]
elif isinstance(inst, Evoked):
data = inst.data[picks][:, time_mask]
return data, sfreq
def _psd_welch(x, sfreq, fmin=0, fmax=np.inf, n_fft=256, n_overlap=0,
n_jobs=1):
"""Compute power spectral density (PSD) using Welch's method.
x : array, shape=(..., n_times)
The data to compute PSD from.
sfreq : float
The sampling frequency.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
n_fft : int
The length of the tapers ie. the windows. The smaller
it is the smoother are the PSDs. The default value is 256.
If ``n_fft > len(inst.times)``, it will be adjusted down to
``len(inst.times)``.
n_overlap : int
The number of points of overlap between blocks. Will be adjusted
to be <= n_fft. The default value is 0.
n_jobs : int
Number of CPUs to use in the computation.
Returns
-------
psds : ndarray, shape (..., n_freqs) or
The power spectral densities. All dimensions up to the last will
be the same as input.
freqs : ndarray, shape (n_freqs,)
The frequencies.
"""
from scipy.signal import welch
dshape = x.shape[:-1]
n_times = x.shape[-1]
x = x.reshape(-1, n_times)
# Prep the PSD
n_fft, n_overlap = _check_nfft(n_times, n_fft, n_overlap)
win_size = n_fft / float(sfreq)
logger.info("Effective window size : %0.3f (s)" % win_size)
freqs = np.arange(n_fft // 2 + 1, dtype=float) * (sfreq / n_fft)
freq_mask = (freqs >= fmin) & (freqs <= fmax)
freqs = freqs[freq_mask]
# Parallelize across first N-1 dimensions
parallel, my_pwelch, n_jobs = parallel_func(_pwelch, n_jobs=n_jobs)
x_splits = np.array_split(x, n_jobs)
f_psd = parallel(my_pwelch(d, noverlap=n_overlap, nfft=n_fft,
fs=sfreq, freq_mask=freq_mask,
welch_fun=welch)
for d in x_splits)
# Combining/reshaping to original data shape
psds = np.concatenate(f_psd, axis=0)
psds = psds.reshape(np.hstack([dshape, -1]))
return psds, freqs
@verbose
def psd_welch(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None, n_fft=256,
n_overlap=0, picks=None, proj=False, n_jobs=1, verbose=None):
"""Compute the power spectral density (PSD) using Welch's method.
Calculates periodigrams for a sliding window over the
time dimension, then averages them together for each channel/epoch.
Parameters
----------
inst : instance of Epochs or Raw or Evoked
The data for PSD calculation
fmin : float
Min frequency of interest
fmax : float
Max frequency of interest
tmin : float | None
Min time of interest
tmax : float | None
Max time of interest
n_fft : int
The length of the tapers ie. the windows. The smaller
it is the smoother are the PSDs. The default value is 256.
If ``n_fft > len(inst.times)``, it will be adjusted down to
``len(inst.times)``.
n_overlap : int
The number of points of overlap between blocks. Will be adjusted
to be <= n_fft. The default value is 0.
picks : array-like of int | None
The selection of channels to include in the computation.
If None, take all channels.
proj : bool
Apply SSP projection vectors. If inst is ndarray this is not used.
n_jobs : int
Number of CPUs to use in the computation.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
psds : ndarray, shape (..., n_freqs)
The power spectral densities. If input is of type Raw,
then psds will be shape (n_channels, n_freqs), if input is type Epochs
then psds will be shape (n_epochs, n_channels, n_freqs).
freqs : ndarray, shape (n_freqs,)
The frequencies.
See Also
--------
mne.io.Raw.plot_psd, mne.Epochs.plot_psd, psd_multitaper,
csd_epochs
Notes
-----
.. versionadded:: 0.12.0
"""
# Prep data
data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj)
return _psd_welch(data, sfreq, fmin=fmin, fmax=fmax, n_fft=n_fft,
n_overlap=n_overlap, n_jobs=n_jobs)
@verbose
def psd_multitaper(inst, fmin=0, fmax=np.inf, tmin=None, tmax=None,
bandwidth=None, adaptive=False, low_bias=True,
normalization='length', picks=None, proj=False,
n_jobs=1, verbose=None):
"""Compute the power spectral density (PSD) using multitapers.
Calculates spectral density for orthogonal tapers, then averages them
together for each channel/epoch. See [1] for a description of the tapers
and [2] for the general method.
Parameters
----------
inst : instance of Epochs or Raw or Evoked
The data for PSD calculation.
fmin : float
Min frequency of interest
fmax : float
Max frequency of interest
tmin : float | None
Min time of interest
tmax : float | None
Max time of interest
bandwidth : float
The bandwidth of the multi taper windowing function in Hz. The default
value is a window half-bandwidth of 4.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth.
normalization : str
Either "full" or "length" (default). If "full", the PSD will
be normalized by the sampling rate as well as the length of
the signal (as in nitime).
picks : array-like of int | None
The selection of channels to include in the computation.
If None, take all channels.
proj : bool
Apply SSP projection vectors. If inst is ndarray this is not used.
n_jobs : int
Number of CPUs to use in the computation.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
psds : ndarray, shape (..., n_freqs)
The power spectral densities. If input is of type Raw,
then psds will be shape (n_channels, n_freqs), if input is type Epochs
then psds will be shape (n_epochs, n_channels, n_freqs).
freqs : ndarray, shape (n_freqs,)
The frequencies.
References
----------
.. [1] Slepian, D. "Prolate spheroidal wave functions, Fourier analysis,
and uncertainty V: The discrete case." Bell System Technical
Journal, vol. 57, 1978.
.. [2] Percival D.B. and Walden A.T. "Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques."
Cambridge University Press, 1993.
See Also
--------
mne.io.Raw.plot_psd, mne.Epochs.plot_psd, psd_welch, csd_epochs
Notes
-----
.. versionadded:: 0.12.0
"""
# Prep data
data, sfreq = _check_psd_data(inst, tmin, tmax, picks, proj)
return _psd_multitaper(data, sfreq, fmin=fmin, fmax=fmax,
bandwidth=bandwidth, adaptive=adaptive,
low_bias=low_bias,
normalization=normalization, n_jobs=n_jobs)
|